Science of Sintering, 53 (2021) 37-53

https://doi.org/10.2298/SOS2101037V

UDK: 552.52; 621.315.612;676.017.2, 675.92.027
An Artificial Neural Network-based Prediction Model for

Utilization of Coal Ash in Production of Fired Clay Bricks: A
review

Milica Vidak Vasic’l*), Lato Pemz, Vivek Gupta3, Sandeep Chaudhary3’4,
Zagorka Radojevi¢'

nstitute for Testing of Materials IMS, Bulevar vojvode Miiéa 43, 11000 Belgrade,
Serbia

University of Belgrade, Institute of General and Physical Chemistry, Studentski trg
12, 11000 Belgrade, Serbia

3Discipline of Civil Engineering, Indian Institute of Technology Indore, Simrol,
Indore 453552, India

*Center for Rural Development and Technology, Indian Institute of Technology
Indore, Simrol, Indore 453552, India

Abstract:

This study analyzed the last 20 years" data available on power plant coal ashes used
in clay brick production. The statistical analysis has been carried out for a total of 302 cases
based on the relevant parameters reported in the literature. The chemical composition of the
clays and coal ashes, percentage incorporation and maximum particle size of ash, size of
fired samples, peak firing temperature, and the corresponding soaking time were selected as
inputs for modeling. The product characteristics i.e. open porosity, water absorption, and
compressive strength was taken as output parameters. An artificial neural network model has
been developed and showed a satisfactory fit to experimental data and predicted the observed
output variables with the overall coefficient of determination (r’) of 0.972 during the training
period. Besides, the reduced chi-square, mean bias error, root mean square error, and mean
percentage error were utilized to check the correctness of the obtained model, which proved
the network generalization capability. The sensitivity analysis of the model suggested that the
quantity of Na,O coming from brick clays, the percentages of SiO; and K,O coming from
ashes, and MgO coming from clays were the most influential parameters in descending order
for the ash-clay composite bricks” quality, mostly owing to the influence of fluxes during
firing.
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1. Introduction

Coal ash (CA) is the major waste generated in thermal power plants. Its® quantity is
constantly growing with the increase in the number of thermal power plants to meet the huge
electricity demand. Coal ashes contain significant concentrations of heavy metals; however,
they are not hazardous according to the United States Environmental Protection Agency. The
main problems concerning the ashes are their troublesome and costly disposal. They are
mostly being used as secondary raw materials in the road embankments, the building
construction, and the cement industry [1-3].
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The properties of CAs significantly depend on the quality of coal used and the
combustion process. At first sight, the ashes can be broadly divided into two categories: fly
ashes (rich in fine particle fraction) and bottom ashes (rich in coarse particle fraction). Fly ash
(FA) is gathered from exhaust gases through a dust collector, bag filter, and an electrostatic
precipitator. The bottom ash (BA) is gathered from the furnace bottom after incineration.
Generally, the thermal power plant generates about 20-80 % of BA, depending on the process
conditions and the type of furnace used. BA is considered to be of lower quality since the
pozzolanic ability is relatively lower. FA and BA are directly provided to the industries for
their effective end-utilization. However, the excess quantities of FA and BA are commonly
disposed of in nearby water ponds to minimize the air pollution caused due to fine particles of
coal ashes. The mixture of FA and BA found at the disposal ponds is known as pond ash
(PA), and is often not a uniform material. The coal ashes differ significantly in phy51ca1
properties, but may also differ in chemical compositions due to significant variation in
unburnt particles [4]. One of the most significant problems for utilization of the ashes arises
due to the widely differing quantities of silica and alumina contents [5, 6]. Besides, the quality
of CA also depends on the type and the age of coal used and the leftover quantity of calcium
after the burning process. For example, the anthracite, as the older deposit, gives the ash
containing about 10 wt.% of CaO when burnt, whereas, in the case of the younger sediments
(sub-bituminous coal), the coal ash possesses more than 20 wt.% of CaO [5].

The macro-oxides content in coal ashes is somewhat similar to that of brick clays; the
main constituents of both materials are silica, aluminum oxide, and iron oxide. This allows
the coal ashes to be used in large quantities in the brick industry. In addition to incorporating
the waste itself, there are several other environmental advantages concerning the
implementation in the brick industry. Coal ash-clay bricks require less energy in the firing
phase since most of the ashes™ material is already burnt in the thermal power plants. Also,
these products are of lower unit weight than traditional ones (up to 10-20 %) which decreases
the transport costs, facilitates easier handling, and improve the thermal insulation properties
[1]. Intensive research studies were carried out to evaluate the potential of coal ash utilization
in the formulations of ash-clay bricks in the last decades [2, 5, 7-17]. Since the chemical
composition of the brick clays and coal ashes vary, the present investigation is aimed to
summarize all the available results and identify the most influential factors affecting the
quality of common clay bricks and coal ash bricks, through a mathematical model. The work
explores the suitability of coal ashes in the production of bricks depending on their chemical
composition. The database used in the present study consisted of the 302 cases obtained from
the available literature for the period from the year 2001 to 2020. In the previous studies [4,
13, 14], Artificial Neural Network was used successfully to predict the mechanical properties
of building construction materials. In this study, the parameters of interest concerning the
relevant raw materials® and process™ parameters were tested using Analysis of Variance, and
25 inputs were chosen to describe 6 outputs (as described in the next section). The Artificial
Neural Network (ANN) model was built, and its predictive properties were tested on many
levels. The developed model has a practical application by using it as software to predict open
porosity, water absorption, and compressive strength of the clay-ash bricks. The model can be
updated in the future by including the new data on the same subject, when available. Further,
the global sensitivity method was used for determining the influence of the input parameters
on the outputs. The important and crucial parameters in defining the final product’s
characteristics could be concluded based on this analysis.

2. Materials and Experimental Procedures

The study considered the 302 cases available in the literature on the usage of fly [1, 3-
5,7-15,18-30], bottom ashes [2, 6, 24, 30], and pond ashes [5, 13, 14, 31] in clay bricks.
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Artificial Neural Networks (ANN) modeling was applied in this study to describe the
characteristics of clay bricks (sign b in indexes) and bricks made of coal ash-clay mixtures
(sign m in indexes).

2.1. Input and output parameters

The list of inputs included the parameters related to clay and ash characteristics,
resultant blended mix, and the other parameters related to the brick manufacturing process as
shown in Table I. The parameters related to clay characteristics were the percentage content
of major oxides and the loss on ignition of the clay used for brick production. Similarly, the
parameters related to ash characteristics were the percentage content of commonly occurring
oxides and the loss on ignition of the ash used for brick formulations. The other input
parameters were the percentage weight of ash in the resultant blended mix (w/w), maximum
particle sizes of the ash (PS..y), peak firing temperature (FT), corresponding soaking time at
peak firing temperature (StFT), and the bearing surface of samples (S). The output parameters
considered were the open porosity (OP,, and OP,,), the water absorption (WA, and WA,,), and
the compressive strength (CS, and CS,) for clay bricks and coal ash-clay mixture bricks
respectively as shown in Table 1.

Tab. I Input and output variables considered in the present study.

Input parameters (25 Nos.) Output parameters (6 Nos.)
Clay Coal ash Other Clav bricks Coal ash-clay
characteristics characteristics parameters (3yNos ) mixture bricks
(10 Nos.) (10 Nos.) (05 Nos.) ’ (3 Nos.)
(Si0,). (Si0,), PSx OP, OP,,
(A1203 )c (A1203 )a w/w WAb WAm
(Fe,03). (Fe,03), S CS, CSn
(Ca0). (Ca0), StFT
(MgO) (MgO), FT
(Na,0). (Na,0),
(K20). (K20),
(TiO»). (TiO2)a
(MnO). (SO3).
(LOID). (LOD).

The considered input parameters, obtained from the literature, were measured using
different methods and techniques. Macro-oxides contents in brick clays and coal ashes were
determined by different techniques such as classical silicate analysis [6], X-ray fluorescence
spectrometer [1, 3, 9, 11-15, 18, 19, 21, 27, 29, 30], Scanning Electron Microscopy with
energy-dispersive X-ray spectroscopy [2], and Inductively Coupled Plasma mass
spectroscopy [10]. The results are summarized in Table II.

Particle size distributions of coal ashes were determined by wet [5, 6, 13, 14, 22, 24,
28, 30], and dry sieving [8], while in some studies [1, 3, 9, 11, 12, 25, 29], the samples were
sieved or ground and certain fractions were used for the brick production. In the present
study, the maximum particle size of the ash (PS,,,) used for brick production was considered
as the input parameter.

The samples were cast by hand in a mold [25, 26, 31], hydraulically pressed [2, 3, 5,
8, 11, 18, 22, 29, 30], or shaped in a vacuum extruder [1, 9, 10, 13-15, 19, 21, 27, 30]. In most
of the studies considered, dimensions of the samples were determined by caliper, and the
sample’s bearing surface was calculated. In the present study, the bearing surface of the
specimen (S) was considered as representative of size in the list of input parameters.
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Tab. II Chemical composition of the brick clays and the coal ashes.

Brick (Al:03)c  (S5i02c (Fe203). (Ca0O). (MgO). (Na:0)e (K:0)c (Ti0z). (MnO). LOIL

clays (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Min 5.80 46.88 2.66 0.27 0.06 0.00 0.45 0.00 0.00 0.00

M ax 21.89 81.10 16.32 10.30 8.15 2.36 8.27 1.90 0.47 5.57

Average 13.87  58.62 6.39 5.20 2.25 1.22 2.39 0.77 0.07 0.65

Standard =, | 8.56 3.02 2.92 1.95 0.74 1.29 0.73 012 149

deviation

Coal (ALLO3). (Si02. (Fe203), (Ca0), (MgO), (Na:0). (K:0)a (TiO2). (MnO), LOL
ashes (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Min 7.14 16.17 2.41 0.59 0.00 0.00 0.00 0.00 0.00 0.00

Max 63.67  67.40 16.52 26.02 4.94 13.45 5.19 2.80 1.29 10.34
Average 18.86  44.26 7.27 10.07 1.81 1.90 1.77 0.72 0.11 3.00

Standard 9.53 16.69 3.56 9.49 1.23 2.73 0.88 0.73 0.28 3.99

deviation

Index c refers to the brick clays, and the index a refers to the ashes.

The firing was done in an electric furnace [2, 3, 5, 6, 8, 11-14, 18-23, 29, 30], tunnel
kiln [1, 9, 10, 27], or in a primitive chamber kiln [1, 15, 25, 26, 28, 31] , in the temperatures
range 750-1300 °C. In the present study, the peak firing temperature (FT), and the
corresponding soaking time at peak firing temperature (StFT) were considered as
representative of the manufacturing process in the list of input parameters.

Similarly, the considered output parameters were measured using different methods
and techniques. The open porosity (OP, and OP,,) of bricks was calculated after measuring
the weight of dry samples, and saturated wet samples in the air and water according to the
standard procedure [1, 2, 3-5, 12-14, 20, 29, 30]. The water absorption (WA, and WA, of
bricks was determined in a standard way using the water-saturated weight and the oven-dried
weight. The samples were soaked in distilled water in ambient conditions, whereas, in some
studies [1-3, 5, 9, 11, 12-15, 21, 23-31], the water absorption was determined by the boiling
method. The bricks were tested for compressive strength (CS, and CS,,) using a hydraulic
press and by following the standard procedure [1-5, 9, 10-15, 18, 20, 22-26, 28-31].

2.2, Statistical analysis and Artificial Neural Network modeling

The STATISTICA 10.0 (StatSoft Inc. Tulsa, OK, USA) software was used for testing
the data and the ANN modeling. The gathered database of the considered 302 cases is first
examined using Principal Components Analysis to test the variability of the parameters, and
then, the input and output parameters (as previously shown in Table I) were selected for ANN
modeling. Artificial Neural Networks were built following the procedure which was the most
efficient as per the previous studies on a similar subject [13, 14, 32-35]. A multilayer
perceptron model consisting of three layers was used for building the network, while
constantly minimizing the differences between the network predicted and experimental
results. Thus, Broyden— Fletcher—Goldfarb—Shanno (BFGS) algorithm is utilized within the
program. The coefficient of determination (r°), reduced chi-square ()*), mean bias error, and
also root mean square and mean percentage errors were used to check the correctness of the
obtained model [34, 36].

2.3. Global sensitivity analysis

This study consisted of 25 input variables, which would make the classical sensitivity
analysis very complex [37], so the influence of the input parameters on the output parameters
(properties of final brick products) was simultaneously analyzed using the global sensitivity
method for establishing the relative importance of each variable on the model output [38].
The relative importance of the input variables is estimated using Equation 1, according to the
methodology previously proposed for global sensitivity analysis [39]:
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Y r=o(WikWkj)
X abs XR_(WikWk )

RI;j[%] = 100% (1)

where RI; presents the relative importance of the " input variable on the j’h output, w;; means
the weight between the " input and the k” hidden neuron, and wy; 1s the weight between the

k™ hidden neuron and the j” output, while abs represent the absolute value.

3. Results and Discussion
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Fig. 1. ANOVA analysis of the 20 years literature database using selected categorical
parameters: (a) compressive strength of clay bricks (CS;) concerning the used furnaces, (b)
compressive strength of coal ash-clay bricks (CS,,) dependence on the used furnaces. (c)
dependence of compressive strength of coal ash-clay bricks (CS,,) on the type of the ashes,
and (d) water absorption of coal ash-clay bricks (WA, related to the coal ashes class.

The first-hand analysis of the database was done by observing the percentual differences of
clay bricks and coal ash-clay bricks characteristics (open porosities, water absorptions, and
compressive strengths). The highest average changes in coal ash-clay bricks were observed in
water absorption values (+17.44 %), while changes in open porosities were a bit lower
(+12.57 %). The compressive strengths were lowered with the addition of coal ashes for 4.63
% on average. The general rule is that the unburned parts of the ashes introduced the new
pores in the system while decreasing the strength of the fired products [8, 28, 30]. In some of
the studies, the changes in product quality were vice-versa (improved compressive strength
or/and lowered water absorption in coal ash-clay bricks compared to clay bricks) [2, 6, 26,
40]. Besides, with the addition of coal ashes up to 60 %, WA, was up to about 20 %, and with
a higher share of coal ashes, it went up to over 40 %. Generally, the amounts of waste higher
than 50 % introduced more significant changes to the outputs. However, the higher contents
of CA in the mixtures are not a constraint in the quality of products [14]. It must be
emphasized that the increased content of the ashes lowers the plasticity and makes the



42 M. V. Vasié et al.,/Science of Sintering, 53(2021)37-53

extrusion process difficult if the plasticizer is not added [2]. In the case of maximally
increased values of CS,, and OP,, it seems that the reason behind is not the content of the ash,
but the chemical composition (mostly the quantity of CaO, MgO, ALO;, and SiO,). WA
maximally decreased in the cases when there was more or equal to 65 % of SiO, and up to
about 6 % of CaO and MgO in the clay-ash mix [1, 9, 18, 25]. These general remarks were
further checked and analyzed in-depth with the use of mathematical modeling and analysis.

The literature-gathered database was at first checked using Analysis of Variance to
test the variability of the input parameters. The parameters that showed low variability were
the contents of SO; in brick clays (0.65 % on average) and the contents of MnO in the ashes
(0.11 % on average), and thus they were excluded from the modeling. Box & Whisker plots
for the output parameters are shown in Fig. 1. The performance of the bricks fired in different
furnaces is compared in Fig. 1a and Fig. 1b. The compressive strengths were found to be the
highest for the samples fired in tunnel kilns as compared to products fired in electric furnaces
and chamber kilns for both clay bricks and coal ash-clay bricks. When the coal ash with a
higher CaO content (the ash of class C) was used, the values of WA, were found higher than
the cases using class F ashes. The compressive strength, CS,, was also lower in the case of the
ash of class C (Fig. 1). This indicated that class F ashes are more favorable to be used in the
brick industry, which is already observed earlier [21].

Principal components analysis is done to present the positions of the samples and
output parameters in an orthogonal space. The used methodology was in more details
explained in the previous study [14]. Based on the statistical analysis of the observed outputs,
it is seen that there were two statistically significant factor coordinates. In factor 1, the
variances that participated the most were of OP. OP,, WA. and WA,,. The factor 2
constituted mostly of CS. and CS,,. Eigenvalues of these two factors contributed to a high
ability to describe the chosen parameters since they covered about 84 % of the system
variability. It is evident from Fig. 2 that water absorption and open porosity of pure clay
bricks and the mixed ash-clay bricks were positively correlated, while the increase in OP,
Opm, WA, and Wam meant the decrease in CS and CSm.

5

4

PC 2:24.27%

PC 1: 56.96%

Fig. 2. Principal components analysis of the characteristics of the fired samples.

To sum the effects of the observed inputs over the outputs, the contour plots were
made and shown in Fig. 3 and Fig. 4. The weight percent of the added ashes considerably
increased water absorption and decreased compressive strength, but the firing temperature is
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more influential then w/w (Fig. 3b). CSm increased with the rise of FT and StFT, as seen in
Fig. 3c. The researchers used peak temperatures between 1140 and 1300 °C in the case of
higher w/w (in between 60 and 90 %) when WAm was up to 10 % (Fig. 3d). Considering the
chemical content, more calcite in clay and lower amounts of K,O in the ashes increased the
water absorption (Fig. 4a), the complicated relationships of silica and K,O from the ashes and
(Na,0). are seen in Fig. 4b, Fig. 4c, and Fig. 4d. It is concluded that the relationships between
the followed parameters are very complex and that mathematical modeling must be

employed.
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Fig. 3. The technological and processing parameters™ relationships: (a) WA, against CS,, and
w/w, (b) WA, against FT and CS,, (c) FT against CSm and StFT, and (d) FT against WAm
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Fig. 4. The influence of chemical content of the raw materials to the final properties of clay-
ash bricks: (a) WA, against (CaO). and (K,0),, (b) WA, against (Na,O). and (SiO,),, (c)
WA, against (Na,0), and (CaO),, and (d) CS,, against (K,0), and (CaO), (%).
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3.1. ANN modeling

Artificial Neural Networks (ANN) modeling was applied in this study to describe the
characteristics of common clay bricks and bricks made of coal ash-clay mixtures. Since there
was no sufficient data in the literature regarding firing in a tunnel and chamber furnaces, the
variable that could distinguish the type of the furnace used was not considered as an input
parameter. However, it is indirectly contained in the parameter describing the soaking time at
peak temperature. A similar situation was with the categorical parameter that would describe
the type of coal ashes. However, that information was again included indirectly in the
chemical analysis. It must be emphasized that introducing the parameter that is already
contained in the inputs lowers the quality of the developed network.

According to the ANN performance, the optimal number of neurons in the hidden
layer for the six output parameters (OPy,, OP,,, WA,, WA,, CS,, and CS,)) was 17 (network
MLP 25-17-6). The network gave high values of r* (overall 0.972, during the training period)
and low values of SOS (Table III). The goodness of fit between experimental measurements
and model calculated outputs, represented as ANN performance (sum of 1 between measured
and calculated output parameters OP,, OP,, WA,, WA, CS,, and CS,), during training,
testing, and validation steps, are shown in Table IV. Samples for these steps were chosen
using the random function, by dividing the collected database to 60 % for training, and 20 %
each for testing and validation [37].

Tab. III Summary of the parameters related to the developed ANN model.

Network performance Network error Used algorithms and functions
Network ‘ ) o Traini Error .
name Train- Test  validat Training  Test Validatio ML ey Hidden Output
ing -ion -n algorit activation activation
-hm ]
MLP 25- 970 0891 0919 13447 61.890 59.101 BEGS  gog  Exponent -y i
17-6 129 -ial

Tab. IV Coefficients of determination (°) between experimentally measured and ANN
outputs during training, testing, and validation steps.

opP, oP,, WA, WA, CS, CSn

Training 0.991 0.960 0.991 0.951 0.977 0.964
Testing 0.953 0.776 0.952 0.883 0.889 0.899

Validation 0.989 0.884 0.996 0.871 0.941 0.839

ANN models predicted the output values (OP,, OP,, WA,, WA, CS,, and CS,)
satisfactorily for a broad range of the chosen parameters. This conclusion can be seen in Fig.
5, where the experimentally measured and the ANN model's predicted values of the outputs
are presented as r° values. The least scattering of the results was observed with the standard
bricks. CS,, showed the lowest accuracy during prediction, which means that the high
variability of the results is obtained, which may be caused by the different dimensions of the
samples.

ANN models were highly complex (720 weights-biases) because of the intensive nonlinearity
of the developed system [37]. The values of r” between experimental and ANN model outputs
were between 0.951-0.991 during the training period (Table IV).

The quality of the model fit and the residual analysis were tested and presented in
Table V. The ANN model showed a minor lack of fit tests, which means the model
satisfactorily predicted the ANN outputs. To test the accuracy of the models, several
methodologies were used (the coefficient of determination, r*; the sum of squares, SOS;
reduced chi-square, y°; mean bias error, MBE; root mean square error, RMSE; and mean
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percentage error, MPE) [37]. The predicted values were very close to the desired values
(Table IV and Fig. 5). Error functions (SOS) obtained with the ANN models were of the same
order of magnitude as in experimental errors.
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Fig. 5. Experimental and predicted values obtained for (a) open porosity of clay bricks, (b)
open porosity of coal ash-clay bricks, (c) water absorption of clay bricks, (d) water absorption
of coal ash-clay bricks, (e) compressive strength of clay bricks, and (f) compressive strength

coal ash-clay bricks.
Tab. V Calculated parameters for the applied artificial neural networks.
Output Reduced chi- Root mean Mean bias error Mean
square square error percentage error

OP, 3.451 1.837 -0.050 5.261

OP,, 11.512 3.355 0.008 11.279
WA, 0.513 0.708 0.039 2.780
WA, 2.840 1.666 0.027 6.712

CSy 20.745 4.504 -0.207 15.525

CS,, 30.676 5.477 0.411 26.445
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3.1.1. The matrix for prediction of the quality of bricks

The computation of the outputs using the obtained ANN model is presented in the
following Equation:

Y = fl(WQ X f2(W1 X X+ Bl) + B2) (2)

where W; and B, represent the matrices associated with the hidden layer (weights and biases),
while the output layer is presented with W, and B,. Y is the matrix of the output variables, f;
and f, are transfer functions in the hidden and output layers, respectively, X is the matrix of
the input variables. An exponential function was used in the hidden layer, while the logistic
function is used as a transfer function in the output layer.

Output variables can be calculated by applying transfer functions f; and f, in the
hidden and output layers, respectively, onto the matrix of input variables X using Eq. (1).
Table VIa-b presents the elements of matrix W; and vector B, (presented in "bias" column),
while Table VIla-b presents the elements of matrix W, and vector B, ("bias" raw) for the
hidden layer.

Tab. VIa Elements of matrix W1 and vector B1 (presented in the “bias” column).

Hidden
neuron
Input 1 2 3 4 5 6 7 8
parameter
(AL O3), 0.263 1.347 0.240 -1.254 -0.112 0.662 1.370 -0.472
(Si0y). -0.411 0.214 -0.125 -0.307 0.607 -0.250 -0.674 0.827
(Fe>03). -0.340 -0.543 -0.215 -0.161 -0.940 -1.333 -0.240 1.555
(CaO), -0.230 -2.562 -0.297 -1.326 -0.021 -0.348 -2.708 -1.334
MgO), 0.602 0.774 0.786 -1.080 0.723 2.710 1.945 0.761
(Na,0). -1.234 1.402 -1.104 -1.373 -1.197 -1.205 0.375 0.026
(K,0), -0.235 0.437 -0.253 -0.364 0.024 -0.273 -2.910 0.232
(TiO,), -0.924 2.782 -0.944 -0.135 -0.996 0.470 -0.875 -1.144
(MnO), -0.341 -1.835 -1.604 -0.008 -2.346 0.066 -0.672 -0.403
(LOI), -0.078 -2.108 -0.883 0.439 -0.203 -0.571 -1.053 -0.175

(ALO3), 0.295 0.422 -0.324 0.264 0.025 0.960 0.696 -1.923
(Si0,), 0.409 -2.148 0.247 0971 -1.825 -1.320 1.142 -0.968
(Fe,03), 0.269 -1.520 -1.031 -0.102 -2.030 -1.311 0.285 0.155
(Ca0), 0.203 1.746 -0.284 -0.227 1.597 1.372 1.746 0.982
MgO), 0.250 -0.305 0.515 -0.475 0.421 0.955 0.498 0.181
(NaO), -0946 | -1.206 -0.596 -0.336 -0.911 -1.888 0.281 0.299
(K>,0), -0.578 | -0.679 -0.265 0.383 -0.288 -0.335 -0.267 0.415
(TiOy), -1.258 | -0.250 -1.411 -0.677 -1.120 0.908 0.363 -1.657
(503), 0.067 0.701 0.969 0.630 -0.669 -0.490 -1.922 -0.012
(LOD), -0.051 -0.378 1.246 1.489 -1.529 -0.928 -1.541 -0.613

w/w 0.370 -0.141 0.628 0.218 0.383 1.349 0.272 -0.217
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PSux -0.891 0.212 -1.977 1.810 -1.024 -1.623 0.845 -0.379
StFT 0.444 0.455 1.235 0.289 1.193 -0.971 2.151 0.008
FT -0.446 -1.081 -0.521 1.077 1911 1.222 0.499 -0.126
S 0.902 2.308 3.010 0.579 1.727 0.313 0.000 0.266
Bias -0.270 -0.286 -0.478 -0.839 0.066 -0.180 -0.580 0.730
Tab. VIb Elements of matrix W1 and vector B1 (presented in the “bias” column).
Hidden
neuron
Input 9 10 11 13 14 15 16 17
parameter
(ALLOs3), -1.053 -0.584 -1.346 -0.186 -0.629 -1.143 -0.151 -1.092 0.254
(Si0;). 1.473 0.568 -0.548 -0.221 0.270 0.844 -0.952 1.461 1.231
(Fe,03). -1.509 0.140 -0.373 -0.167 -0.496 -0.775 -0.906 -0.446 0.860
(Ca0O), -0.387 -1.154 -0.854 -0.612 0.758 -0.831 -0.495 -0.322 1.136
MgO), 0.985 -0.075 0.771 1.843 1.287 -0.214 1.071 -2.000 0.497
(Nay,0), 0.182 0.501 0.237 -0.911 -0.253 -1.254 -0.354 2.668 -0.866
(K,0), 0.293 0.524 0.426 0.320 -0.435 0.230 -2.071 0.498 -0.597
(TiOy). -0.904 0916 -1.122 -0.442 3.625 -0.836 0.709 0.383 -1.249
MnO), -0.312 | -1.649 -0.946 -0.857 0.302 -2.018 -0.500 -2.531 -0.224
(LOI), -1.057 0.403 -0.767 -0.242 1.210 -0.404 0.946 -0.619 -1.175
(A1,03), 0.351 0.200 0.069 0.583 1.607 0.262 3.081 0.555 -0.776
(Si0»), 2.353 -0.959 -0.447 0.152 -0.921 -0.867 -0.652 -0.689 -1.487
(Fex03), -1.783 -1.076 -0.494 -0.546 0.507 -1.212 -1.546 -1.122 -2.469
(Ca0), -0.948 -0.030 1.837 1.776 -1.872 0.545 1.002 0.099 -1.118
MgO), -0.961 0.628 -0.281 0.195 -0.688 -0.454 0.233 -0.957 1.575
(Na,0), -0.853 -0.123 -1.185 -1.335 -0.194 -1.387 -1.216 -0.245 0416
(K,0), -4.542 | -1.026 -0.816 -1.721 -0.238 -1.154 2.197 -1.058 -1.243
(TiOy), -0.693 -0.203 -1.394 0.215 -1.672 -0.741 -0.279 -2.398 0.354
(SO3), 0.330 -2.191 -0.453 0.356 0.714 0.074 0.102 -0.706 -1.267
(LOD), 3.810 -3.506 0.448 -0.227 -0.304 1.117 -1.908 -0.377 0.839
w/wW 0.882 0.227 1.082 -1.768 -0.092 0.302 0.424 0.445 1.117
PSiax 0.056 -0.936 -1.597 -0.780 -1.785 -1.205 -2.642 -1.233 0.773
StFT -0.899 1.979 0.767 0.115 0.231 2.692 1.407 0.102 0.534
FT 1.301 -0.519 3.033 0.337 -1.779 -0.028 0.986 2.975 1.010
S 1.765 0.634 0.751 1.319 -0.425 2.480 -2.645 1.541 1.127
Bias 0.166 0.367 -1.316 -0.673 0.379 -0.477 -0.676 -0.140 0.524
Tab. VIIa Elements of matrix W2 and vector B2 ("bias" raw).
Hidden
neuron
Output | > | 3| 4| 5| 6| 7] 8| 9] 10
parameter
OP, 0.659 | 0.367 | -0.172 | -0.502 [ -1.566 | 0.078 [ -0.819 | -0.704 | 0.229 | -0.269
OP,, -0.102 | 0.417 | -0.206 | 1.066 | -0.968 [ 0.231 | -0.557 | -0.002 [ 0.861 0.512
WA, -1.107 | 0.436 | -0.921 | -2.538 1.424 | 0.088 | -1.622 [ -0.136 | 0.373 1.102
WA, -1.122 | 0.340 | -0.325 | 0.379 1.519 | 0.451 | -1.095 | 0.747 0.873 1.970
CS, -0.811 | -2.316 | 1.098 | 0.274 | 0.819 [ 0.727 | -1.650 | -3.067 | -1.063 | 0.177
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CS,. 0.224 | -0.817 1.066 | -1.440 | 0.376 | 0.226 | -1.185 | -2.965 | -1.364 | -0.781
Bias 0.659 0.367 | -0.172 | -0.502 | -1.566 | 0.078 | -0.819 | -0.704 | 0.229 | -0.269
Tab. VIIb Elements of matrix W2 and vector B2 ("bias" raw).

Hidden

neuron

Output .

parameter 11 12 13 14 15 16 17 Bais

OPc 0.816 0.381 0.042 0.948 0.620 | -0.154 | -0.362 | 0.511
OPm 1.093 | -0.462 | 0.162 0.801 1.084 | -1.441 | -1.096 | -0.639
WA, -0.721 | -0.118 | 0.126 1.286 0.204 | -0.469 | 0.268 1.215
WA, -0.358 | -1.627 | 0.122 | 0.196 0.701 | -1.687 | -0.694 | -0.709
CS. 0.240 | -0.365 | -1.224 | 0.720 | -0.918 | 1.770 | -1.399 | 5.083
CS., 1.033 0.371 | -0.951 | -0.113 | -1.235 | 2.673 | -1.281 | 4.247
Bias 0.816 0.381 0.042 | 0.948 0.620 | -0.154 | -0.362 | 0.511

3.2. Global sensitivity analysis - the relative importance of parameters

The method of weights partitioning [39] allows for determining the relative
importance of the input parameters over the output parameters of ANN. The weights between
the input, hidden, and output layers are used to calculate the relative importance of each of the
input parameters (Fig. 6).

The highest influence on a global model behavior is determined in the case of
concentration of fluxes in the mixtures. The highest relative importance was found in the case
of concentration of Na,O in brick clays, then the quantity of SiO, and K,O in the coal ashes,
and at last the concentration of calcite and magnesite in the clays. Na,O in clays is found
mainly in the form of feldspar albite (NaAlSi;Og), which is made up of particles larger than
10 um. Since plasticity increases with the increase in finer particle fraction (below 2 um), the
coarser fraction not only lowers the plasticity, susceptibility to drying, and drying shrinkage,
but also the water absorption and the open porosity. Free Na,O is also an important flux in
these systems, that lower the melting point of the matrix. Besides, the remaining amorphous
phase in the fired products also depends on the content of feldspars [41].

Relative importance (%)

LOIS
(Fe,05)¢

(sioy. 2
wW/wl l

(MnO)
(MgO),
(Nazo)a—

(Fe,0,), 1

Variables

Fig. 6. The relative importance of the ANN input parameters.
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The importance of SiO, is ascertained by the fact that the ashes contain silica partly as
quartz and partly in the form of other compounds such as mullite, anorthite, or cristobalite.
Since silica was found in higher concentrations in clays than the ashes, the higher contents of
the ashes decreased the overall percentage content of silica in the mixtures, and especially
quartz [2], which increased water absorption and decreased compressive strength of the
products. Quartz in ceramic bodies is important as its higher quantity can lower the matrix
strength and decrease the melting point [36, 41]. The quantity of large-sized particles, which
lowers the strength during the cooling phase and increases the open porosity, is decreased
with the addition of the ashes [36]. The addition of coal ashes lowered the contents of SiO,,
K,0, Ca0O, and MgO in the matrix, which means that the fluxing characteristics are weaker
when compared to the primary clay material [36, 43]. Also, calcium-oxide can react with
quartz or alumina/silica from clay minerals during high- temperature decomposition and form
silicates, which increase compressive strength. In here present cases, it seems that this
reaction rarely occurred since the clays were not rich in clay minerals or the carbonate grains
were large. Grains of CaO larger than 1 mm increase porosity. The decreased content of
(CaO). influenced the drop in WA of the ash-clay bricks, as shown in Fig. 4.

The next in the line by the importance is the maximum particle size of the ashes. It is
known that brick quality depends on the particle size of the raw materials as smaller particles
enable faster sintering while forming more of a glassy phase, improving compressive strength,
and eliminating the pores. Fine particles of CA reduce the final firing temperature, while the
coarse particles promote crystallization, increase porosity, and lower the strength of the
products [29].

LOI of CAs was higher than that of brick clays on average. Its importance is
reflected in the fact that the ashes contain the remaining combustible components that give
additional energy to the system. It is known that this parameter defers the low (high LOI
results) and high (low LOI values) grade fly ash. Besides, the newly-introduced pores
improve the insulating properties of the final bricks. The increased LOI generally influenced
higher WA, values, but this parameter also showed a combined effect with the other, such as
the origin of the burnt matter (carbonates or organic compounds).

TiO; in clays is considered as somewhat impassive. Titanium can be present in the
form of oxide or titanate, as a constituent of hematite or rutile. Rutile is one of the most
widely recognized minerals of titanium which appears as a supporting mineral in mica,
granite, limestone, dolomite, quartz, hematite, and feldspar, which explains its® importance.

The soaking time at the final temperature was found to be the important input
parameter [41]. It contained the information on the type of furnace used since industrial
conditions require long soaking times. In the references included in this study, the soaking
times in electrical furnaces varied from 0—10 h. There was only one variant for the soaking
time (40 h) in the tunnel kiln, while in the chamber kilns the times varied from 72—360 h.

TiO, introduced with the ashes showed an opposite influence compared to that of
clays, since its™ increased contents decreased open porosity and water absorption.

CaO was present in the ashes in higher quantities than that in brick clays, and it
greatly affected the compressive strength of the products by lowering it. The calcite in clays
was probably present in finer particle sizes, while in the ashes the grains were coarser. As
mentioned before, the high CA quantities (above 50 %) significantly lower the quality of
bricks in terms of compressive strength [45].

Class F ashes contain low SO; concentrations [46], but the higher contents are seen in
ashes of Class C. The impact of sulfates from CAs was much more important than that of
brick clays. The average content of SO; in CAs was 3.46 %, while clays contained 0.68 %.
With the higher addition of CAs, in the reduction atmosphere, there is a possibility of calcium
sulfide occurrence. A black reduction core in the product lowers the compressive strength and
the frost resistance [47].
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The importance of the composition of ALO; in the ashes reflected probably in the
presence of mullite, which slightly lowered compressive strength and intensively increased
water absorption [48].

Firing temperature, the surface of the samples, and the quantity of the added ashes
were not as significant parameters as the others. It seems that the chemical composition of the
two raw materials plays the greatest role in the final product quality.

This study can be improved, when more valuable data is available. The more
numerous data concerning the firing of coal ash clay bricks in tunnel and chamber kilns are
needed. Also, there is a lack of research studies related to bottom and pond ash usage in clay
brick production. Besides the usually followed parameters that characterize the final brick
products, more information is needed regarding their durability and frost resistance [48].

4. Conclusion

The leading idea of this study was to systematically analyze the usage of coal ashes
generated in thermal power plants in clay bricks production. The database consisted of 302
cases incorporating 1 wt.% - 90 wt.% of different types of coal ashes (fly, bottom, and pond
ashes). The raw materials (clays and ashes) were characterized by the major oxides contents.
Besides, the other ashes™ characteristics i.e. particle size and quantity of ash incorporated were
considered for modeling. The manufacturing parameters such as the size of the fired products,
firing temperature, and the corresponding soaking time were also accounted for in the model.
The product’s quality was described by open porosity, water absorption, and compressive
strength for both the common clay bricks and the ash-clay bricks. The mathematical model is
developed using Artificial Neural Networks which, by their high values of coefficients of
determination and satisfactory fitting to the experimental data, can be used as software for
predicting the quality of the products based on the raw material characteristics, composition,
and processing conditions. Taking into account that a considerable amount and wide variety
of data had been used to obtain the ANN models, it is expected to be very useful as a simple
way to preliminary decide the product characteristics. The simulated values obtained from the
ANN model were close to the actual values, thus the ANN model can act as a decision
support system to attain the desired objective in the production of coal ash-clay bricks.

A global sensitivity analysis of the obtained models followed, which highlighted the
greatest impacts of the studied parameters. It was found that the composition of the fluxes
(Na,0O, CaO, and MgO originating from the clay, and K,O introduced with the ashes) played
the most important role in the quality of final products. Besides, silica introduced with the
coal ashes showed up to be influential since lowering its total content in the matrix and thus
demoting the appearance of silicates during firing.

Most of the literature is focused on the viability of making bricks from mixtures of
clay and coal combustion residues with emphasis on the resulting physical and mechanical
properties, but further investigations on the durability of products are needed. Besides, more
experiments on firing coal ash clay bricks in tunnel and chamber kilns would be valuable in
enriching the database, which would improve the model and consequent conclusions.
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Casicemak: Y 080M uCmpasicueary aHAIU3Uparu cy no0ayl O ye/beHum neneaumd u3 mepmo-
eeKmpana Koju cy ce KOPUCHUIU )Y NPpOouU3eoomru onexke )y nociedrux 20 eoouHa.
Cmamucmuyka ananuza cnpogedena je na ykynuo 302 cayuaja na oCHO8Y pele8aHmHux
napamemapa u3 aumepamype. Kao ynasnu nooayu 3a mooenogarse uzabpanu cy xemujcku
cacmae enuHA U ye/beHuX neneid, y0eo U MakCUMAaIHa 6eUYUHA YeCmuya neneid, 6eiudund
neyenux y30paka, puiHa meMnepanypa nevera u oo2osapajyhe mpajarse cunmeposarsa.
Kapaxmepucmuke npouzsooa kao wimo cy omsopena nopo3Hocm, ynujarse 6ooe u ugpcmoha
HA NPpUMUCAK y3eme Cy Kao u3nasiu napamempu. Passujen je mooen y oo1uxy eewimauxe
HEYPOHCKe Mpedice, KOju je NOKA3a0 3a0060ba8ajyhie nokianarwe ca eKcnepumenmaiium
nooayuma u Koju je npedgudeo nocmampane uzidazne napamempe ca KoepuyujeHmom
demepmunayuje (r°) 00 0,972, mokom nepuoda yuersa mpevice. [loped moea, pedykosanu xu-
Keaopam, cpeodid ecpeuika 00Cmynard, KopeH cpeodre Keaopamue epeuike u cpeorba
npoYyeHmyaina epewxa Kopuwhenu cy 3a npogepy mavHocmu npeosularba 0odujenoe
MoO0ena, yume je 00Kka3ana 000pa cnocooHocm 2enepanuzayuje pa3eujene mpeace. Ananusa
ocemmusocmu mooeia cyeepucana je oa cy koauyurne Na,O u3 onexapckux iuHa, 3amum
yoenu SiO; u K,O koju nomuuy uz nenena, kao u caopicaj MgQO y enunama onaoajyhum
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PeooM Hajymuyaj Huju Ha K8AIUmMem KOMHOZUMHUX ONeKa 00 Y2/beno2 neneia u 2nune, umo
yKa3syje Ha 8adxdCHOCM NPUCYCMEa MOnumesba y npoyecy neuersd.

Kwyune peuu: Onexapcke enune, y2menu neneo, mpaouyuoHaina Kepamukd, Mexanuika
c80jCmea, Mamemamuyko Mooen08arse.
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