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Abstract: 
 This study analyzed the last 20 years` data available on power plant coal ashes used 

in clay brick production. The statistical analysis has been carried out for a total of 302 cases 

based on the relevant parameters reported in the literature. The chemical composition of the 

clays and coal ashes, percentage incorporation and maximum particle size of ash, size of 

fired samples, peak firing temperature, and the corresponding soaking time were selected as 

inputs for modeling. The product characteristics i.e. open porosity, water absorption, and 

compressive strength was taken as output parameters. An artificial neural network model has 
been developed and showed a satisfactory fit to experimental data and predicted the observed 

output variables with the overall coefficient of determination (r
2
) of 0.972 during the training 

period. Besides, the reduced chi-square, mean bias error, root mean square error, and mean 

percentage error were utilized to check the correctness of the obtained model, which proved 

the network generalization capability. The sensitivity analysis of the model suggested that the 

quantity of Na2O coming from brick clays, the percentages of SiO2 and K2O coming from 

ashes, and MgO coming from clays were the most influential parameters in descending order 
for the ash-clay composite bricks` quality, mostly owing to the influence of fluxes during 

firing. 

Keywords: Clays; Coal ash; Traditional ceramics; Mechanical properties; Modeling.  

 
1. Introduction 

 
 Coal ash (CA) is the major waste generated in thermal power plants. Its  ̀quantity is 
constantly growing with the increase in the number of thermal power plants to meet the huge 
electricity demand. Coal ashes contain significant concentrations of heavy metals; however, 
they are not hazardous according to the United States Environmental Protection Agency. The 
main problems concerning the ashes are their troublesome and costly disposal. They are 
mostly being used as secondary raw materials in the road embankments, the building 
construction, and the cement industry [1-3]. 
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 The properties of CAs significantly depend on the quality of coal used and the 
combustion process. At first sight, the ashes can be broadly divided into two categories: fly 
ashes (rich in fine particle fraction) and bottom ashes (rich in coarse particle fraction). Fly ash 
(FA) is gathered from exhaust gases through a dust collector, bag filter, and an electrostatic 
precipitator. The bottom ash (BA) is gathered from the furnace bottom after incineration. 
Generally, the thermal power plant generates about 20-80 % of BA, depending on the process 
conditions and the type of furnace used. BA is considered to be of lower quality since the 
pozzolanic ability is relatively lower. FA and BA are directly provided to the industries for 
their effective end-utilization. However, the excess quantities of FA and BA are commonly 
disposed of in nearby water ponds to minimize the air pollution caused due to fine particles of 
coal ashes. The mixture of FA and BA found at the disposal ponds is known as pond ash 
(PA), and is often not a uniform material. The coal ashes differ significantly in physical 
properties, but may also differ in chemical compositions due to significant variation in 
unburnt particles [4]. One of the most significant problems for utilization of the ashes arises 
due to the widely differing quantities of silica and alumina contents [5, 6]. Besides, the quality 
of CA also depends on the type and the age of coal used and the leftover quantity of calcium 
after the burning process. For example, the anthracite, as the older deposit, gives the ash 
containing about 10 wt.% of CaO when burnt, whereas, in the case of the younger sediments 
(sub-bituminous coal), the coal ash possesses more than 20 wt.% of CaO [5]. 
 The macro-oxides content in coal ashes is somewhat similar to that of brick clays; the 
main constituents of both materials are silica, aluminum oxide, and iron oxide. This allows 
the coal ashes to be used in large quantities in the brick industry. In addition to incorporating 
the waste itself, there are several other environmental advantages concerning the 
implementation in the brick industry. Coal ash-clay bricks require less energy in the firing 
phase since most of the ashes  ̀ material is already burnt in the thermal power plants. Also, 
these products are of lower unit weight than traditional ones (up to 10-20 %) which decreases 
the transport costs, facilitates easier handling, and improve the thermal insulation properties 
[1]. Intensive research studies were carried out to evaluate the potential of coal ash utilization 
in the formulations of ash-clay bricks in the last decades [2, 5, 7-17]. Since the chemical 
composition of the brick clays and coal ashes vary, the present investigation is aimed to 
summarize all the available results and identify the most influential factors affecting the 
quality of common clay bricks and coal ash bricks, through a mathematical model. The work 
explores the suitability of coal ashes in the production of bricks depending on their chemical 
composition. The database used in the present study consisted of the 302 cases obtained from 
the available literature for the period from the year 2001 to 2020. In the previous studies [4, 
13, 14], Artificial Neural Network was used successfully to predict the mechanical properties 
of building construction materials. In this study, the parameters of interest concerning the 
relevant raw materials  ̀and process  ̀parameters were tested using Analysis of Variance, and 
25 inputs were chosen to describe 6 outputs (as described in the next section). The Artificial 
Neural Network (ANN) model was built, and its predictive properties were tested on many 
levels. The developed model has a practical application by using it as software to predict open 
porosity, water absorption, and compressive strength of the clay-ash bricks. The model can be 
updated in the future by including the new data on the same subject, when available. Further, 
the global sensitivity method was used for determining the influence of the input parameters 
on the outputs. The important and crucial parameters in defining the final product s̀ 
characteristics could be concluded based on this analysis.  
 
 
2. Materials and Experimental Procedures 
 
 The study considered the 302 cases available in the literature on the usage of fly [1, 3-
5,7-15,18-30], bottom ashes [2, 6, 24, 30], and pond ashes [5, 13, 14, 31] in clay bricks. 
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Artificial Neural Networks (ANN) modeling was applied in this study to describe the 
characteristics of clay bricks (sign b in indexes) and bricks made of coal ash-clay mixtures 
(sign m in indexes).  
 
2.1. Input and output parameters 
 
 The list of inputs included the parameters related to clay and ash characteristics, 
resultant blended mix, and the other parameters related to the brick manufacturing process as 
shown in Table I. The parameters related to clay characteristics were the percentage content 
of major oxides and the loss on ignition of the clay used for brick production. Similarly, the 
parameters related to ash characteristics were the percentage content of commonly occurring 
oxides and the loss on ignition of the ash used for brick formulations. The other input 
parameters were the percentage weight of ash in the resultant blended mix (w/w), maximum 
particle sizes of the ash (PSmax), peak firing temperature (FT), corresponding soaking time at 
peak firing temperature (StFT), and the bearing surface of samples (S). The output parameters 
considered were the open porosity (OPb and OPm), the water absorption (WAb and WAm), and 
the compressive strength (CSb and CSm) for clay bricks and coal ash-clay mixture bricks 
respectively as shown in Table I. 
 
Tab. I Input and output variables considered in the present study. 

Input parameters (25 Nos.) Output parameters (6 Nos.) 

Clay 
characteristics 

(10 Nos.) 

Coal ash 
characteristics 

(10 Nos.) 

Other 
parameters 
(05 Nos.) 

Clay bricks 
(3 Nos.) 

Coal ash-clay 
mixture bricks 

(3 Nos.) 
(SiO2)c (SiO2)a PSmax OPb OPm 

(Al2O3)c (Al2O3)a w/w WAb WAm 
(Fe2O3)c (Fe2O3)a S CSb CSm 
(CaO)c (CaO)a StFT   
(MgO)c (MgO)a FT   
(Na2O)c (Na2O)a    
(K2O)c (K2O)a    
(TiO2)c (TiO2)a    
(MnO)c (SO3)a    
(LOI)c (LOI)a    

 
 The considered input parameters, obtained from the literature, were measured using 
different methods and techniques. Macro-oxides contents in brick clays and coal ashes were 
determined by different techniques such as classical silicate analysis [6], X-ray fluorescence 
spectrometer [1, 3, 9, 11-15, 18, 19, 21, 27, 29, 30], Scanning Electron Microscopy with 
energy-dispersive X-ray spectroscopy [2], and Inductively Coupled Plasma mass 
spectroscopy [10]. The results are summarized in Table II. 
 Particle size distributions of coal ashes were determined by wet [5, 6, 13, 14, 22, 24, 
28, 30], and dry sieving [8], while in some studies [1, 3, 9, 11, 12, 25, 29], the samples were 
sieved or ground and certain fractions were used for the brick production. In the present 
study, the maximum particle size of the ash (PSmax) used for brick production was considered 
as the input parameter. 
 The samples were cast by hand in a mold [25, 26, 31], hydraulically pressed [2, 3, 5, 
8, 11, 18, 22, 29, 30], or shaped in a vacuum extruder [1, 9, 10, 13-15, 19, 21, 27, 30]. In most 
of the studies considered, dimensions of the samples were determined by caliper, and the 
sample’s bearing surface was calculated. In the present study, the bearing surface of the 
specimen (S) was considered as representative of size in the list of input parameters. 
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Tab. II Chemical composition of the brick clays and the coal ashes. 
Brick 
clays 

(Al2O3)c 
(%) 

(SiO2)c 
(%) 

(Fe 2O 3)c 
(%) 

(CaO)c 
(%) 

(MgO )c 
(%) 

(Na2O )c 
(%) 

(K2O )c 
(%) 

(TiO 2)c 
(%) 

(MnO )c 
(%) 

LO Ic 
(%) 

Min 5.80 46.88 2.66 0.27 0.06 0.00 0.45 0.00 0.00 0.00 
Max 21.89 81.10 16.32 10.30 8.15 2.36 8.27 1.90 0.47 5.57 
Average 13.87 58.62 6.39 5.20 2.25 1.22 2.39 0.77 0.07 0.65 
Standard 
deviation 

3.16 8.56 3.02 2.92 1.95 0.74 1.29 0.73 0.12 1.49 

Coal 
ashes 

(Al2O3)a 
(%) 

(SiO2)a 
(%) 

(Fe 2O3)a 
(%) 

(CaO)a 
(%) 

(MgO )a 
(%) 

(Na2O)a 
(%) 

(K2O )a 
(%) 

(TiO 2)a 
(%) 

(MnO )a 
(%) 

LO Ia 
(%) 

Min 7.14 16.17 2.41 0.59 0.00 0.00 0.00 0.00 0.00 0.00 
Max 63.67 67.40 16.52 26.02 4.94 13.45 5.19 2.80 1.29 10.34 
Average 18.86 44.26 7.27 10.07 1.81 1.90 1.77 0.72 0.11 3.00 
Standard 
deviation 

9.53 16.69 3.56 9.49 1.23 2.73 0.88 0.73 0.28 3.99 

Index c refers to the brick clays, and the index a refers to the ashes. 

 The firing was done in an electric furnace [2, 3, 5, 6, 8, 11-14, 18-23, 29, 30], tunnel 
kiln [1, 9, 10, 27], or in a primitive chamber kiln [1, 15, 25, 26, 28, 31] , in the temperatures 
range 750-1300 °C. In the present study, the peak firing temperature (FT), and the 
corresponding soaking time at peak firing temperature (StFT) were considered as 
representative of the manufacturing process in the list of input parameters. 
 Similarly, the considered output parameters were measured using different methods 
and techniques. The open porosity (OPb and OPm) of bricks was calculated after measuring 
the weight of dry samples, and saturated wet samples in the air and water according to the 
standard procedure [1, 2, 3-5, 12-14, 20, 29, 30]. The water absorption (WAb and WAm) of 
bricks was determined in a standard way using the water-saturated weight and the oven-dried 
weight. The samples were soaked in distilled water in ambient conditions, whereas, in some 
studies [1-3, 5, 9, 11, 12-15, 21, 23-31], the water absorption was determined by the boiling 
method. The bricks were tested for compressive strength (CSb and CSm) using a hydraulic 
press and by following the standard procedure [1-5, 9, 10-15, 18, 20, 22-26, 28-31]. 
 
2.2. Statistical analysis and Artificial Neural Network modeling 

 
 The STATISTICA 10.0 (StatSoft Inc. Tulsa, OK, USA) software was used for testing 
the data and the ANN modeling. The gathered database of the considered 302 cases is first 
examined using Principal Components Analysis to test the variability of the parameters, and 
then, the input and output parameters (as previously shown in Table I) were selected for ANN 
modeling. Artificial Neural Networks were built following the procedure which was the most 
efficient as per the previous studies on a similar subject [13, 14, 32-35]. A multilayer 
perceptron model consisting of three layers was used for building the network, while 
constantly minimizing the differences between the network predicted and experimental 
results. Thus, Broyden– Fletcher–Goldfarb–Shanno (BFGS) algorithm is utilized within the 
program. The coefficient of determination (r2), reduced chi-square (χ2), mean bias error, and 
also root mean square and mean percentage errors were used to check the correctness of the 
obtained model [34, 36]. 
 
2.3. Global sensitivity analysis 

 
 This study consisted of 25 input variables, which would make the classical sensitivity 
analysis very complex [37], so the influence of the input parameters on the output parameters 
(properties of final brick products) was simultaneously analyzed using the global sensitivity 
method for establishing the relative importance of each variable on the model output [38]. 
The relative importance of the input variables is estimated using Equation 1, according to the 
methodology previously proposed for global sensitivity analysis [39]: 
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 𝑅𝐼𝑖𝑗[%] =  ∑ (𝑤𝑖𝑘𝑤𝑘𝑗)𝑛𝑘=0∑ 𝑎𝑏𝑠 ∑ (𝑤𝑖𝑘𝑤𝑘𝑗)𝑛𝑘=0𝑚𝑖=0  100 %        (1) 

 
where RIij presents the relative importance of the ith input variable on the j th output, wik means 
the weight between the ith input and the k th hidden neuron, and wkj is the weight between the 
k

th hidden neuron and the j th output, while abs represent the absolute value. 
 
 
3. Results and Discussion 
 

 
 

Fig. 1. ANOVA analysis of the 20 years literature database using selected categorical 
parameters: (a) compressive strength of clay bricks (CSb) concerning the used furnaces, (b) 
compressive strength of coal ash-clay bricks (CSm) dependence on the used furnaces. (c) 

dependence of compressive strength of coal ash-clay bricks (CSm) on the type of the ashes, 
and (d) water absorption of coal ash-clay bricks (WAm) related to the coal ashes class. 

 
The first-hand analysis of the database was done by observing the percentual differences of 
clay bricks and coal ash-clay bricks characteristics (open porosities, water absorptions, and 
compressive strengths). The highest average changes in coal ash-clay bricks were observed in 
water absorption values (+17.44 %), while changes in open porosities were a bit lower 
(+12.57 %). The compressive strengths were lowered with the addition of coal ashes for 4.63 
% on average. The general rule is that the unburned parts of the ashes introduced the new 
pores in the system while decreasing the strength of the fired products [8, 28, 30]. In some of 
the studies, the changes in product quality were vice-versa (improved compressive strength 
or/and lowered water absorption in coal ash-clay bricks compared to clay bricks) [2, 6, 26, 
40]. Besides, with the addition of coal ashes up to 60 %, WAm was up to about 20 %, and with 
a higher share of coal ashes, it went up to over 40 %. Generally, the amounts of waste higher 
than 50 % introduced more significant changes to the outputs. However, the higher contents 
of CA in the mixtures are not a constraint in the quality of products [14]. It must be 
emphasized that the increased content of the ashes lowers the plasticity and makes the 
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extrusion process difficult if the plasticizer is not added [2]. In the case of maximally 
increased values of CSm and OPm, it seems that the reason behind is not the content of the ash, 
but the chemical composition (mostly the quantity of CaO, MgO, Al2O3, and SiO2). WA 
maximally decreased in the cases when there was more or equal to 65 % of SiO2 and up to 
about 6 % of CaO and MgO in the clay-ash mix [1, 9, 18, 25]. These general remarks were 
further checked and analyzed in-depth with the use of mathematical modeling and analysis. 
 The literature-gathered database was at first checked using Analysis of Variance to 
test the variability of the input parameters. The parameters that showed low variability were 
the contents of SO3 in brick clays (0.65 % on average) and the contents of MnO in the ashes 
(0.11 % on average), and thus they were excluded from the modeling. Box & Whisker plots 
for the output parameters are shown in Fig. 1. The performance of the bricks fired in different 
furnaces is compared in Fig. 1a and Fig. 1b. The compressive strengths were found to be the 
highest for the samples fired in tunnel kilns as compared to products fired in electric furnaces 
and chamber kilns for both clay bricks and coal ash-clay bricks. When the coal ash with a 
higher CaO content (the ash of class C) was used, the values of WAm were found higher than 
the cases using class F ashes. The compressive strength, CSm was also lower in the case of the 
ash of class C (Fig. 1). This indicated that class F ashes are more favorable to be used in the 
brick industry, which is already observed earlier [21]. 

Principal components analysis is done to present the positions of the samples and 
output parameters in an orthogonal space. The used methodology was in more details 
explained in the previous study [14]. Based on the statistical analysis of the observed outputs, 
it is seen that there were two statistically significant factor coordinates. In factor 1, the 
variances that participated the most were of OP c, OPm, WAc, and WAm. The factor 2 
constituted mostly of CSc and CSm. Eigenvalues of these two factors contributed to a high 
ability to describe the chosen parameters since they covered about 84 % of the system 
variability. It is evident from Fig. 2 that water absorption and open porosity of pure clay 
bricks and the mixed ash-clay bricks were positively correlated, while the increase in OP, 
Opm, WA, and Wam meant the decrease in CS and CSm. 
 

 
 

Fig. 2. Principal components analysis of the characteristics of the fired samples. 
 

 To sum the effects of the observed inputs over the outputs, the contour plots were 
made and shown in Fig. 3 and Fig. 4. The weight percent of the added ashes considerably 
increased water absorption and decreased compressive strength, but the firing temperature is 
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more influential then w/w (Fig. 3b). CSm increased with the rise of FT and StFT, as seen in 
Fig. 3c. The researchers used peak temperatures between 1140 and 1300 °C in the case of 
higher w/w (in between 60 and 90 %) when WAm was up to 10 % (Fig. 3d). Considering the 
chemical content, more calcite in clay and lower amounts of K2O in the ashes increased the 
water absorption (Fig. 4a), the complicated relationships of silica and K2O from the ashes and 
(Na2O)c are seen in Fig. 4b, Fig. 4c, and Fig. 4d. It is concluded that the relationships between 
the followed parameters are very complex and that mathematical modeling must be 
employed. 
 

 
 
Fig. 3. The technological and processing parameters  ̀relationships: (a) WAm against CSm and 
w/w, (b) WAm against FT and CSm, (c) FT against CSm and StFT, and (d) FT against WAm 

and w/w. 
 

 
 
Fig. 4. The influence of chemical content of the raw materials to the final properties of clay-
ash bricks: (a) WAm against (CaO)c and (K2O)a, (b) WAm against (Na2O)c and (SiO2)a, (c) 

WAm against (Na2O)c and (CaO)c, and (d) CSm against (K2O)a and (CaO)a (%). 
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3.1. ANN modeling 
 

Artificial Neural Networks (ANN) modeling was applied in this study to describe the 
characteristics of common clay bricks and bricks made of coal ash-clay mixtures. Since there 
was no sufficient data in the literature regarding firing in a tunnel and chamber furnaces, the 
variable that could distinguish the type of the furnace used was not considered as an input 
parameter. However, it is indirectly contained in the parameter describing the soaking time at 
peak temperature. A similar situation was with the categorical parameter that would describe 
the type of coal ashes. However, that information was again included indirectly in the 
chemical analysis. It must be emphasized that introducing the parameter that is already 
contained in the inputs lowers the quality of the developed network. 

According to the ANN performance, the optimal number of neurons in the hidden 
layer for the six output parameters (OPb, OPm, WAb, WAm, CSb, and CSm) was 17 (network 
MLP 25-17-6). The network gave high values of r2 (overall 0.972, during the training period) 
and low values of SOS (Table III). The goodness of fit between experimental measurements 
and model calculated outputs, represented as ANN performance (sum of r2 between measured 
and calculated output parameters OPb, OPm, WAb, WAm, CSb, and CSm), during training, 
testing, and validation steps, are shown in Table IV. Samples for these steps were chosen 
using the random function, by dividing the collected database to 60 % for training, and 20 % 
each for testing and validation [37]. 
 
Tab. III Summary of the parameters related to the developed ANN model. 

Network 

name 

Network performance Network error Used algorithms and functions 

Train-
ing 

Test 
Validat

-ion 
Training Test 

Validatio
-n 

Traini
-ng 

algorit
-hm 

Error 
functi
-on 

Hidden 
activation 

Output 
activation 

MLP 25-
17-6 

0.972 0.891 0.919 13.447 61.890 59.101 
BFGS 
129 

SOS 
Exponent

-ial 
Logistic 

 
Tab. IV Coefficients of determination (r2) between experimentally measured and ANN 
outputs during training, testing, and validation steps. 

 OPb OPm WAb WAm CSb CSm 

Training 0.991 0.960 0.991 0.951 0.977 0.964 
Testing 0.953 0.776 0.952 0.883 0.889 0.899 

Validation 0.989 0.884 0.996 0.871 0.941 0.839 

 
ANN models predicted the output values (OPb, OPm, WAb, WAm, CSb, and CSm) 

satisfactorily for a broad range of the chosen parameters. This conclusion can be seen in Fig. 
5, where the experimentally measured and the ANN model̀ s predicted values of the outputs 
are presented as r2 values. The least scattering of the results was observed with the standard 
bricks. CSm showed the lowest accuracy during prediction, which means that the high 
variability of the results is obtained, which may be caused by the different dimensions of the 
samples. 
ANN models were highly complex (720 weights-biases) because of the intensive nonlinearity 
of the developed system [37]. The values of r2 between experimental and ANN model outputs 
were between 0.951-0.991 during the training period (Table IV). 

The quality of the model fit and the residual analysis were tested and presented in 
Table V. The ANN model showed a minor lack of fit tests, which means the model 
satisfactorily predicted the ANN outputs. To test the accuracy of the models, several 
methodologies were used (the coefficient of determination, r2; the sum of squares, SOS; 
reduced chi-square, χ2; mean bias error, MBE; root mean square error, RMSE; and mean 
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percentage error, MPE) [37]. The predicted values were very close to the desired values 
(Table IV and Fig. 5). Error functions (SOS) obtained with the ANN models were of the same 
order of magnitude as in experimental errors. 

 

 
 

Fig. 5. Experimental and predicted values obtained for (a) open porosity of clay bricks, (b) 
open porosity of coal ash-clay bricks, (c) water absorption of clay bricks, (d) water absorption 
of coal ash-clay bricks, (e) compressive strength of clay bricks, and (f) compressive strength 

coal ash-clay bricks. 
 

Tab. V Calculated parameters for the applied artificial neural networks. 
Output Reduced chi-

square 
Root mean 

square error 
Mean bias error Mean 

percentage error 
OPb 3.451 1.837 -0.050 5.261 
OPm 11.512 3.355 0.008 11.279 
WAb 0.513 0.708 0.039 2.780 
WAm 2.840 1.666 0.027 6.712 
CSb 20.745 4.504 -0.207 15.525 
CSm 30.676 5.477 0.411 26.445 
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3.1.1. The matrix for prediction of the quality of bricks  

 
The computation of the outputs using the obtained ANN model is presented in the 

following Equation: 
 

Y = f1(W2 x f2(W1 x X + B1) + B2)           (2) 
 
where W1 and B1 represent the matrices associated with the hidden layer (weights and biases), 
while the output layer is presented with W2 and B2. Y is the matrix of the output variables, f1 
and f2 are transfer functions in the hidden and output layers, respectively, X is the matrix of 
the input variables. An exponential function was used in the hidden layer, while the logistic 
function is used as a transfer function in the output layer. 

Output variables can be calculated by applying transfer functions f1 and f2 in the 
hidden and output layers, respectively, onto the matrix of input variables X using Eq. (1). 
Table VIa-b presents the elements of matrix W1 and vector B1 (presented in "bias" column), 
while Table VIIa-b presents the elements of matrix W2 and vector B2 ("bias" raw) for the 
hidden layer. 
 
Tab. VIa Elements of matrix W1 and vector B1 (presented in the “bias” column). 

Hidden 
neuron 

        

Input 
parameter 

1 2 3 4 5 6 7 8 

(Al2O3)c 0.263 1.347 0.240 -1.254 -0.112 0.662 1.370 -0.472 

(SiO2)c -0.411 0.214 -0.125 -0.307 0.607 -0.250 -0.674 0.827 

(Fe2O3)c -0.340 -0.543 -0.215 -0.161 -0.940 -1.333 -0.240 1.555 

(CaO)c -0.230 -2.562 -0.297 -1.326 -0.021 -0.348 -2.708 -1.334 

(MgO)c 0.602 0.774 0.786 -1.080 0.723 2.710 1.945 0.761 

(Na2O)c -1.234 1.402 -1.104 -1.373 -1.197 -1.205 0.375 0.026 

(K2O)c -0.235 0.437 -0.253 -0.364 0.024 -0.273 -2.910 0.232 

(TiO2)c -0.924 2.782 -0.944 -0.135 -0.996 0.470 -0.875 -1.144 

(MnO)c -0.341 -1.835 -1.604 -0.008 -2.346 0.066 -0.672 -0.403 

(LOI)c -0.078 -2.108 -0.883 0.439 -0.203 -0.571 -1.053 -0.175 

(Al2O3)a 0.295 0.422 -0.324 0.264 0.025 0.960 0.696 -1.923 

(SiO2)a 0.409 -2.148 0.247 0.971 -1.825 -1.320 1.142 -0.968 

(Fe2O3)a 0.269 -1.520 -1.031 -0.102 -2.030 -1.311 0.285 0.155 

(CaO)a 0.203 1.746 -0.284 -0.227 1.597 1.372 1.746 0.982 

(MgO)a 0.250 -0.305 0.515 -0.475 0.421 0.955 0.498 0.181 

(Na2O)a -0.946 -1.206 -0.596 -0.336 -0.911 -1.888 0.281 0.299 

(K2O)a -0.578 -0.679 -0.265 0.383 -0.288 -0.335 -0.267 0.415 

(TiO2)a -1.258 -0.250 -1.411 -0.677 -1.120 0.908 0.363 -1.657 

(SO3)a 0.067 0.701 0.969 0.630 -0.669 -0.490 -1.922 -0.012 

(LOI)a -0.051 -0.378 1.246 1.489 -1.529 -0.928 -1.541 -0.613 

w/w 0.370 -0.141 0.628 0.218 0.383 1.349 0.272 -0.217 
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PSmax -0.891 0.212 -1.977 1.810 -1.024 -1.623 0.845 -0.379 

StFT 0.444 0.455 1.235 0.289 1.193 -0.971 2.151 0.008 

FT -0.446 -1.081 -0.521 1.077 1.911 1.222 0.499 -0.126 

S 0.902 2.308 3.010 0.579 1.727 0.313 0.000 0.266 

Bias -0.270 -0.286 -0.478 -0.839 0.066 -0.180 -0.580 0.730 

 
Tab. VIb Elements of matrix W1 and vector B1 (presented in the “bias” column). 

Hidden 
neuron 

         

Input 
parameter 

9 10 11 12 13 14 15 16 17 

(Al2O3)c -1.053 -0.584 -1.346 -0.186 -0.629 -1.143 -0.151 -1.092 0.254 

(SiO2)c 1.473 0.568 -0.548 -0.221 0.270 0.844 -0.952 1.461 1.231 

(Fe2O3)c -1.509 0.140 -0.373 -0.167 -0.496 -0.775 -0.906 -0.446 0.860 

(CaO)c -0.387 -1.154 -0.854 -0.612 0.758 -0.831 -0.495 -0.322 1.136 

(MgO)c 0.985 -0.075 0.771 1.843 1.287 -0.214 1.071 -2.000 0.497 

(Na2O)c 0.182 0.501 0.237 -0.911 -0.253 -1.254 -0.354 2.668 -0.866 

(K2O)c 0.293 0.524 0.426 0.320 -0.435 0.230 -2.071 0.498 -0.597 

(TiO2)c -0.904 0.916 -1.122 -0.442 3.625 -0.836 0.709 0.383 -1.249 

(MnO)c -0.312 -1.649 -0.946 -0.857 0.302 -2.018 -0.500 -2.531 -0.224 

(LOI)c -1.057 0.403 -0.767 -0.242 1.210 -0.404 0.946 -0.619 -1.175 

(Al2O3)a 0.351 0.200 0.069 0.583 1.607 0.262 3.081 0.555 -0.776 

(SiO2)a 2.353 -0.959 -0.447 0.152 -0.921 -0.867 -0.652 -0.689 -1.487 

(Fe2O3)a -1.783 -1.076 -0.494 -0.546 0.507 -1.212 -1.546 -1.122 -2.469 

(CaO)a -0.948 -0.030 1.837 1.776 -1.872 0.545 1.002 0.099 -1.118 

(MgO)a -0.961 0.628 -0.281 0.195 -0.688 -0.454 0.233 -0.957 1.575 

(Na2O)a -0.853 -0.123 -1.185 -1.335 -0.194 -1.387 -1.216 -0.245 0.416 

(K2O)a -4.542 -1.026 -0.816 -1.721 -0.238 -1.154 2.197 -1.058 -1.243 

(TiO2)a -0.693 -0.203 -1.394 0.215 -1.672 -0.741 -0.279 -2.398 0.354 

(SO3)a 0.330 -2.191 -0.453 0.356 0.714 0.074 0.102 -0.706 -1.267 

(LOI)a 3.810 -3.506 0.448 -0.227 -0.304 1.117 -1.908 -0.377 0.839 

w/w 0.882 0.227 1.082 -1.768 -0.092 0.302 0.424 0.445 1.117 

PSmax 0.056 -0.936 -1.597 -0.780 -1.785 -1.205 -2.642 -1.233 0.773 

StFT -0.899 1.979 0.767 0.115 0.231 2.692 1.407 0.102 0.534 

FT 1.301 -0.519 3.033 0.337 -1.779 -0.028 0.986 2.975 1.010 

S 1.765 0.634 0.751 1.319 -0.425 2.480 -2.645 1.541 1.127 

Bias 0.166 0.367 -1.316 -0.673 0.379 -0.477 -0.676 -0.140 0.524 

 
Tab. VIIa Elements of matrix W2 and vector B2 ("bias" raw). 

Hidden 
neuron 

          

Output 
parameter 

1 2 3 4 5 6 7 8 9 10 

OPc 0.659 0.367 -0.172 -0.502 -1.566 0.078 -0.819 -0.704 0.229 -0.269 

OPm -0.102 0.417 -0.206 1.066 -0.968 0.231 -0.557 -0.002 0.861 0.512 

WAc -1.107 0.436 -0.921 -2.538 1.424 0.088 -1.622 -0.136 0.373 1.102 

WAm -1.122 0.340 -0.325 0.379 1.519 0.451 -1.095 0.747 0.873 1.970 

CSc -0.811 -2.316 1.098 0.274 0.819 0.727 -1.650 -3.067 -1.063 0.177 
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CSm 0.224 -0.817 1.066 -1.440 0.376 0.226 -1.185 -2.965 -1.364 -0.781 

Bias 0.659 0.367 -0.172 -0.502 -1.566 0.078 -0.819 -0.704 0.229 -0.269 

 
Tab. VIIb Elements of matrix W2 and vector B2 ("bias" raw). 

Hidden 
neuron 

        

Output 
parameter 11 12 13 14 15 16 17 Bais 

OPc 0.816 0.381 0.042 0.948 0.620 -0.154 -0.362 0.511 

OPm 1.093 -0.462 0.162 0.801 1.084 -1.441 -1.096 -0.639 

WAc -0.721 -0.118 0.126 1.286 0.204 -0.469 0.268 1.215 

WAm -0.358 -1.627 0.122 0.196 0.701 -1.687 -0.694 -0.709 

CSc 0.240 -0.365 -1.224 0.720 -0.918 1.770 -1.399 5.083 

CSm 1.033 0.371 -0.951 -0.113 -1.235 2.673 -1.281 4.247 

Bias 0.816 0.381 0.042 0.948 0.620 -0.154 -0.362 0.511 

 
3.2. Global sensitivity analysis - the relative importance of parameters 
 

The method of weights partitioning [39] allows for determining the relative 
importance of the input parameters over the output parameters of ANN. The weights between 
the input, hidden, and output layers are used to calculate the relative importance of each of the 
input parameters (Fig. 6).  

The highest influence on a global model behavior is determined in the case of 
concentration of fluxes in the mixtures. The highest relative importance was found in the case 
of concentration of Na2O in brick clays, then the quantity of SiO2 and K2O in the coal ashes, 
and at last the concentration of calcite and magnesite in the clays. Na2O in clays is found 
mainly in the form of feldspar albite (NaAlSi3O8), which is made up of particles larger than 
10 μm. Since plasticity increases with the increase in finer particle fraction (below 2 μm), the 
coarser fraction not only lowers the plasticity, susceptibility to drying, and drying shrinkage, 
but also the water absorption and the open porosity. Free Na2O is also an important flux in 
these systems, that lower the melting point of the matrix. Besides, the remaining amorphous 
phase in the fired products also depends on the content of feldspars [41]. 

 

 
 

Fig. 6. The relative importance of the ANN input parameters. 
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The importance of SiO2 is ascertained by the fact that the ashes contain silica partly as 
quartz and partly in the form of other compounds such as mullite, anorthite, or cristobalite. 
Since silica was found in higher concentrations in clays than the ashes, the higher contents of 
the ashes decreased the overall percentage content of silica in the mixtures, and especially 
quartz [2], which increased water absorption and decreased compressive strength of the 
products. Quartz in ceramic bodies is important as its higher quantity can lower the matrix 
strength and decrease the melting point [36, 41]. The quantity of large-sized particles, which 
lowers the strength during the cooling phase and increases the open porosity, is decreased 
with the addition of the ashes [36]. The addition of coal ashes lowered the contents of SiO2, 
K2O, CaO, and MgO in the matrix, which means that the fluxing characteristics are weaker 
when compared to the primary clay material [36, 43]. Also, calcium-oxide can react with 
quartz or alumina/silica from clay minerals during high- temperature decomposition and form 
silicates, which increase compressive strength. In here present cases, it seems that this 
reaction rarely occurred since the clays were not rich in clay minerals or the carbonate grains 
were large. Grains of CaO larger than 1 mm increase porosity. The decreased content of 
(CaO)c influenced the drop in WA of the ash-clay bricks, as shown in Fig. 4.  

The next in the line by the importance is the maximum particle size of the ashes. It is 
known that brick quality depends on the particle size of the raw materials as smaller particles 
enable faster sintering while forming more of a glassy phase, improving compressive strength, 
and eliminating the pores. Fine particles of CA reduce the final firing temperature, while the 
coarse particles promote crystallization, increase porosity, and lower the strength of the 
products [29]. 
 LOI of CAs was higher than that of brick clays on average. Its importance is 
reflected in the fact that the ashes contain the remaining combustible components that give 
additional energy to the system. It is known that this parameter defers the low (high LOI 
results) and high (low LOI values) grade fly ash. Besides, the newly-introduced pores 
improve the insulating properties of the final bricks. The increased LOI generally influenced 
higher WAm values, but this parameter also showed a combined effect with the other, such as 
the origin of the burnt matter (carbonates or organic compounds). 

TiO2 in clays is considered as somewhat impassive. Titanium can be present in the 
form of oxide or titanate, as a constituent of hematite or rutile. Rutile is one of the most 
widely recognized minerals of titanium which appears as a supporting mineral in mica, 
granite, limestone, dolomite, quartz, hematite, and feldspar, which explains its  ̀ importance. 

The soaking time at the final temperature was found to be the important input 
parameter [41]. It contained the information on the type of furnace used since industrial 
conditions require long soaking times. In the references included in this study, the soaking 
times in electrical furnaces varied from 0–10 h. There was only one variant for the soaking 
time (40 h) in the tunnel kiln, while in the chamber kilns the times varied from 72–360 h. 

TiO2 introduced with the ashes showed an opposite influence compared to that of 
clays, since its  ̀ increased contents decreased open porosity and water absorption.  

CaO was present in the ashes in higher quantities than that in brick clays, and it 
greatly affected the compressive strength of the products by lowering it. The calcite in clays 
was probably present in finer particle sizes, while in the ashes the grains were coarser. As 
mentioned before, the high CA quantities (above 50 %) significantly lower the quality of 
bricks in terms of compressive strength [45]. 

Class F ashes contain low SO3 concentrations [46], but the higher contents are seen in 
ashes of Class C. The impact of sulfates from CAs was much more important than that of 
brick clays. The average content of SO3 in CAs was 3.46 %, while clays contained 0.68 %. 
With the higher addition of CAs, in the reduction atmosphere, there is a possibility of calcium 
sulfide occurrence. A black reduction core in the product lowers the compressive strength and 
the frost resistance [47]. 
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The importance of the composition of Al2O3 in the ashes reflected probably in the 
presence of mullite, which slightly lowered compressive strength and intensively increased 
water absorption [48]. 

Firing temperature, the surface of the samples, and the quantity of the added ashes 
were not as significant parameters as the others. It seems that the chemical composition of the 
two raw materials plays the greatest role in the final product quality. 

This study can be improved, when more valuable data is available. The more 
numerous data concerning the firing of coal ash clay bricks in tunnel and chamber kilns are 
needed. Also, there is a lack of research studies related to bottom and pond ash usage in clay 
brick production. Besides the usually followed parameters that characterize the final brick 
products, more information is needed regarding their durability and frost resistance [48]. 
 
 
4. Conclusion 
 

The leading idea of this study was to systematically analyze the usage of coal ashes 
generated in thermal power plants in clay bricks production. The database consisted of 302 
cases incorporating 1 wt.% - 90 wt.% of different types of coal ashes (fly, bottom, and pond 
ashes). The raw materials (clays and ashes) were characterized by the major oxides contents. 
Besides, the other ashes  ̀characteristics i.e. particle size and quantity of ash incorporated were 
considered for modeling. The manufacturing parameters such as the size of the fired products, 
firing temperature, and the corresponding soaking time were also accounted for in the model. 
The product s̀ quality was described by open porosity, water absorption, and compressive 
strength for both the common clay bricks and the ash-clay bricks. The mathematical model is 
developed using Artificial Neural Networks which, by their high values of coefficients of 
determination and satisfactory fitting to the experimental data, can be used as software for 
predicting the quality of the products based on the raw material characteristics, composition, 
and processing conditions. Taking into account that a considerable amount and wide variety 
of data had been used to obtain the ANN models, it is expected to be very useful as a simple 
way to preliminary decide the product characteristics. The simulated values obtained from the 
ANN model were close to the actual values, thus the ANN model can act as a decision 
support system to attain the desired objective in the production of coal ash-clay bricks. 

A global sensitivity analysis of the obtained models followed, which highlighted the 
greatest impacts of the studied parameters. It was found that the composition of the fluxes 
(Na2O, CaO, and MgO originating from the clay, and K2O introduced with the ashes) played 
the most important role in the quality of final products. Besides, silica introduced with the 
coal ashes showed up to be influential since lowering its total content in the matrix and thus 
demoting the appearance of silicates during firing. 

Most of the literature is focused on the viability of making bricks from mixtures of 
clay and coal combustion residues with emphasis on the resulting physical and mechanical 
properties, but further investigations on the durability of products are needed. Besides, more 
experiments on firing coal ash clay bricks in tunnel and chamber kilns would be valuable in 
enriching the database, which would improve the model and consequent conclusions. 
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Сажетак: У овом истраживању анализирани су подаци о угљеним пепелима из термо-

електрана који су се користили у производњи опеке у последњих 20 година. 
Статистичка анализа спроведена је на укупно 302 случаја на основу релевантних 
параметара из литературе. Као улазни подаци за моделовање изабрани су хемијски 
састав глинa и угљених пепела, удео и максимална величина честица пепела, величина 
печених узорака, вршна температура печења и одговарајуће трајање синтеровања. 
Карактеристике производа као што су отворена порозност, упијање воде и чврстоћа 
на притисак узете су као излазни параметри. Развијен је модел у облику вештачке 
неуронске мреже, који је показао задовољавајуће поклапање са експерименталним 
подацима и који је предвидео посматране излазне параметре са коефицијентом 
детерминације (r2) од 0,972, током периода учења мреже. Поред тога, редуковани хи-

квадрат, средња грешка одступања, корен средње квадратне грешке и средња 
процентуална грешка коришћени су за проверу тачности предвиђања добијеног 
модела, чиме је доказана добра способност генерализације развијене мреже. Анализа 
осетљивости модела сугерисала је да су количине Na2O из опекарских глина, затим 
удели SiO2 и K2O који потичу из пепела, као и садржај MgO у глинама опадајућим 
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редом најутицајнији на квалитет композитних опека од угљеног пепела и глине, што 
указује на важност присуства топитеља у процесу печења. 
Кључне речи: Опекарске глине, угљени пепео, традиционална керамика, механичка 
својства, математичко моделовање. 
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