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Abstract: 
 The machine learning technique for prediction and optimization of building material 
performances became an essential feature in the contemporary civil engineering. The 
Artificial Neural Network (ANN) prognosis of mortar behavior was conducted in this study. 
The model appraised the design and characteristics of seventeen either building or high-
temperature mortars. Seven different cement types were employed. Seventeen mineral 
additives of primary and secondary origin were embedded in the mortar mixtures. Cluster 
Analysis and Principal Component Analysis designated groups of similar mortars assigning 
them a specific purpose based on monitored characteristics. ANN foresaw the quality of 
designed mortars. The impact of implemented raw materials on the mortar quality was 
assessed and evaluated. ANN outputs highlighted the high suitability level of anticipation, i.e., 
0.999 during the training period, which is regarded appropriate enough to correctly predict 
the observed outputs in a wide range of processing parameters. Due to the high predictive 
accuracy, ANN can replace or be used in combination with standard destructive tests thereby 
saving the construction industry time, resources, and capital. Good performances of altered 
cement mortars are positive sign for widening of economical mineral additives application in 
building materials and making progress towards achieved carbon neutrality by reducing its 
emission. 
Keywords: Masonry Cements; High-temperature Cements; Industrial byproducts; Low-cost 
primary raw materials; Circular economy. 
 
 
 
1. Introduction 
 
 There is a constant tendency regarding widening of low-cost mineral additives 
application in the building materials sector in order to make progress towards reduction of 
carbon emission and to achieve carbon neutrality in indoor and outdoor spaces. Therefore, 
natural pozzolana and industrial byproducts are often employed as supplementary admixtures 
in cement-based materials such as concrete and mortar. These additives not only replace 
cement thereby influencing the reduction of CO2 emission in the atmosphere, they also play 
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an important role in the modification of cementitious material microstructure, they rearrange 
chemical reactions routes within cement, and finally they incite changes in mechanical and 
thermal properties of building materials [1-6].  

Various mineral additives have been employed in the design of mortar and concrete 
over past few decades. Each of these either primary or secondary raw materials has positive as 
well as negative effects on the performances of the construction materials. The chemical 
composition of a mineral additive strongly influences and modifies chemical reactions that 
define hydration and subsequent solidification of the observed building material. Besides its 
chemical composition, physical and morphological characteristics of mineral additive 
particles (specific surface area, grain size, diameter and shape) impact properties and final 
behavior of the material. Probably the most effective admixtures to modify the microstructure 
of a cementitious material are nano silica, micro silica and silica fume [7-10]. The silica based 
mineral additives bestow cement mortar and concrete properties (compressive strength, 
flexural strength) due to their pozzolanic reaction and smaller particle sizes than cement 
particles. Limestone powder, fly ash and bottom ash (coal combustion byproducts), and 
zeolite are frequently employed pozzolana resources in the new paradigm of the circular 
economy [11-17]. Limestone powder is frequently utilized for achieving a target flow of fresh 
mixture. This additive induces high early dimensional stability [12]. Fly ash reduces early 
heat of hydration and decreases volume stability issues in different exposure conditions. Fly 
ash requires higher water demands than cement, but it provides denser microstructure [15]. 
Zeolite performances are between those of limestone and fly ash. The addition of natural 
zeolite leads to an improvement in mechanical strengths, durability properties, and weather 
resistance of cementitious material [16]. Due to bentonite outstanding water swelling 
properties, it is used in mortar or concrete to fill the small voids in order to decrease the water 
migration withing the pore structure. This enables excellent waterproofing and 
impermeability characteristics of the building composite. Bentonite does not have significant 
influence on the compressive strength; however, it influences notable improvement in sulfate 
attack resistance [17-22]. Similar to zeolite, the addition of bentonite to the cement matrix 
effectively reduces the leaching rate of the radionuclides and heavy metals [16, 20]. Copper 
slag employed as a replacement for cementing binder or as an admixture has considerable 
influence on the mechanical properties, durability, as well as thermo-mechanical behavior 
[23]. Clay, usually activated by acids or by thermal or alkaline methods, as well as kaolin or 
chamotte grog is widely used low cost pozzolanic materials [24-26]. Powdery alumina 
incorporation leads to long-term improvements in strength of cementitious material due to the 
increase in monosulfate content. Namely, the formation of additional monosulfate phases 
increases solid volume, reduces porosity, and refines pore structure in the cement paste, 
consequently leading to an enhancement of strength at later ages [27]. Perlite, vermiculite, 
spinel, and pyrophyllite are often employed to augment the thermal characteristic such as 
compressive strength after firing [28-31]. 

Artificial intelligence methods such as artificial neural networks (ANNs) are 
becoming more in demand as they are extensively used by many researchers in a variety of 
engineering applications [32-34]. In recent years, studies were reported in which the ANN are 
employed to estimate the various mechanical properties of cementitious building materials 
(mortar of concrete) containing different types of mineral additives [35-38]. Usually 
compressive strengths (CS), as the most important parameter of mortar’s quality, are 
predicted by application of two different multilayer ANN architectures on a large number 
different mixtures (each one comprising number of specimens pinpointed in adequate EN 
standard for CS testing) [37]. As a result, the tested characteristic of mortar containing 
specific mineral additive can be predicted in the multilayer feed forward ANN model. Despite 
the ongoing extensive research in this field, there is still no universal model for the prediction 
of simultaneous effects of additives on mortar properties which would minimize the 
experimental work as well as save cost and time. 
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The aim of the proposed ANN model in this study is to assess the influence of the 
chemical composition of seventeen mineral additives (fly ash, bottom ash, zeolite, bentonite, 
perlite, vermiculite, pyrophyllite, micro silica, silica fume, spinel, chamotte grog, calcinated 
clay, kaolin clay, alumina, limestone, talc, and copper slag) on the quality of cement mortars 
indicated using following parameters: heat of hydration (HH), setting time (IST, FST), cold 
compressive strength (CCS), cold flexural strength (CFS), hot compressive strength (HCS), 
refractoriness (SK, SK-T), and sulphate resistance (SR). The accomplishment of ANN is 
matched to experimental results. Normalized form of the input parameters is obtained and 
applied in the mentioned models in order to increase the correlation between input parameters 
and target to predict more accurate properties of cement mortars. The developed ANN model 
displays high predictive accuracy and can replace or be used in combination with standard 
destructive tests thereby saving the construction industry time, resources, and capital.  
 
 
2. Materials and Experimental Procedures 

 
 Seventeen experimental mortars were prepared for this study. The labels of mortar 
samples, abbreviations used for the employed raw materials, i.e. cements and mineral 
additives, as well as their mix-designs are provided in Table I. Initial six cement mortar 
samples (M-OPC, M-MHHC, M-HESC, M-LHHC, M-HSCR, M-CAC, and M-HAC) were 
used as reference samples in the analytical modeling i.e., for comparison and 
differentiation of altered mortars – mortars with mineral additives (M-FA, M-BA, M-Z, M-
B, M-Pr, M-V, M-Py, M-MS, M-SF, M-Sp, M-CG, M-Cc, M-Kc, M-Ap, M-L, M-T, and 
M-CS).  
 The mortar samples were prepared according to the standard procedure provided in 
SRPS EN 480-1:2015. Mineral additives were employed in quantities from 10 to 20 % 
(calculated from the mass of cement), with respect to EN 197-1, as given in Table I. The 
aggregate comprised three fractions (-0.2+0.6; -0.6+1.0; and -1.0+2.0 mm) of either quartz or 
corundum sand in 1:1:1 ratio.  
 Pozzolanic activity (PA) was estimated for each mineral additive individually 
according to the procedure described in SRPS EN 196-5:2012. In order to maintain the 
simplicity of comparisons during analytical modeling it was adopted that cements (OPC, 
MHHC, HESC, LHHC, HSCR, CAC, and HAC) exhibit the highest pozzolanic activity 
(marked with number 5). Compressive strength of each altered mortar is lower than that of 
standard cement mortar. Therefore, depending on the obtained compressive strength value, 
each of mineral additives was correlated to a mark ranging from 4 to 1 (higher mark indicates 
higher strength i.e., higher PA). 

The hydration heath (HH) was obtained by isothermal conduction calorimetry method 
described in SRPS EN 196-11:2019. Setting times (IST and FST) were determined according 
to SRPS EN 196-3:2019 (Determination of setting times and soundness). Compressive and 
flexural strengths were tested on 4×4×16 cm prismatic samples in accordance with SRPS EN 
196-1:2017 (Detrmination of strength). Mechanical strenths were measured after 3, 7, 14, 21, 
and 28 days upon preparation of the samples. Hot compressive strength was obtained on the 
fired mortar samples. Upon 28 days old of curing and solidification, the prismatic samples 
(4×4×16 cm) were submitted to the thermal treatment in a laboratory furnace at following 
temperatures: 100, 500, 800, and 1000 °C. The rate of heating rate was 100 °C/h with 2 hours 
delay upon reaching the targeted temperature. Refractoriness (SK – number of equivalent 
pyrometric cone, and SK/T – melting temperature of equivalent pyrometric cone in °C) was 
estimated according to ASTM C24-09 (2018) - Standard test method for pyrometric cone 
equivalent (PCE) of fireclay and high-alumina refractory materials. Sulphate resistance was 
tested according to the SRPS CEN/TR 15697:2014 Cement - Performance testing for sulfate 
resistance - State of the art report. In order to simplify analytical modeling SR of the cement 
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mortars and altered mortars was indicated by marks ranging from 1 to 3, i.e., “low – 
moderate – excellent” system where higher mark reveals better sulphate resistance of tested 
material.  

Cluster analysis (CA) was undertaken to categorize and discriminate mortar samples 
i.e., cement mortars (M-OPC, M-MHHC, M-HESC, M-LHHC, M-HSCR, M-CAC, and M-
HAC) and altered mortars (M-FA, M-BA, M-Z, M-B, M-Pr, M-V, M-Py, M-MS, M-SF, M-
Sp, M-CG, M-Cc, M-Kc, M-Ap, M-L, M-T, and M-CS). All samples were aggregated in a 
twenty-four-dimensional space. Complete linkage was used for analytical modeling. City-
block (Manhattan) distance was evaluated in cluster analysis.  
 
Tab. I Mix designs of experimental mortars. 

Mortar Cement (type), % Mineral additive, % Aggregate, % 
Quartz Corundum 

M-OPC 25 (OPC) - 75 - 
M-MHHC 25 (MHHC) - 75 - 
M-HESC 25 (HESC) - 75 - 
M-LHHC 25 (LHHC) - 75 - 
M-HSCR 25 (HSCR) - 75 - 
M-CAC 20 (CAC) - - 80 
M-HAC 20 (CAC) - - 80 
M-FA 20 (OPC) 5 75 - 
M-BA 20 (OPC) 5 75 - 
M-Z 21.25 (OPC) 3.75 75 - 
M-B 21.25 (OPC) 3.75 75 - 
M-Pr 21.25 (OPC) 3.75 75 - 
M-V 21.25 (OPC) 3.75 75 - 
M-Py 17.5 (OPC) 7.5 75 - 
M-MS 22.5 (OPC) 2.5 75 - 
M-SF 22.5 (OPC) 2.5 75 - 
M-Sp 17 (CAC) 3 - 80 
M-CG 17 (CAC) 3 - 80 
M-Cc 21.25 (OPC) 3.75 75 - 
M-Kc 17 (CAC) 3 - 80 
M-Ap 17 (CAC) 3 - 80 
M-L 20 (OPC) 5 75 - 
M-T 17 (CAC) 3 - 80 
M-CS 21.25 (OPC) 3.75 75 - 
Cement: OPC - Ordinary Portland cement; MHHC - Moderate heat hydration cement; HESC - 
High early strength cement; LHHC - Low heat hydration cement; HSCR - High sulphate 
resistant cement; CAC - Calcium aluminate cement; HAC - High alumina cement;  
Additive: FA - Fly ash; BA - Bottom ash; Z - Zeolite; B - Bentonite; Pr - Perlite; V - 
Vermiculite; Py - Pyrophyllite; MS - Micro silica; SF - Silica fume; Sp - Spinel (powder); CG - 
Chamotte grog; Cc - Clay (calcinated clay); Kc - Kaolin clay; Ap - Alumina (powder); L -
Limestone; T - Talc; CS - Copper slag. 
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Tab. II Chemical compositions of experimental mortars. 

Mortar 
SiO2, 

% 
Al2O3, 

% 
Fe2O3, 

% 
CaO, 

% 
MgO, 

% 
K2O, 

% 
Na2O, 

% 
TiO2, 

% 
SO3, 

% 
LoI, % 

M-OPC 76.42 2.02 0.99 15.85 0.72 0.36 0.05 0.015 0.567 0.725 
M-MHHC 75.92 1.87 1.64 15.48 1.05 0.22 0.04 0.015 0.372 0.675 
M-HESC 75.45 1.71 0.87 16.92 0.86 0.29 0.07 0.015 0.820 0.700 
M-LHHC 76.80 1.66 1.27 15.58 0.82 0.16 0.06 0.015 0.547 0.740 
M-HSCR 78.26 1.46 1.07 15.21 0.39 0.21 0.07 0.192 0.22 0.585 
M-CAC 1.80 88.51 1.67 7.32 0.14 0.04 0.05 0.392 0.014 0.276 
M-HAC 0.14 93.80 0.12 5.55 0.02 0.02 0.08 0.008 0.002 0.168 
M-FA 78.43 2.63 1.19 13.03 0.70 0.36 0.06 0.017 0.496 0.807 
M-BA 78.12 2.71 1.14 13.16 0.68 0.37 0.08 0.041 0.489 0.929 
M-Z 77.98 2.24 0.93 13.589 0.63 0.35 0.07 0.015 0.481 1.165 
M-B 77.72 2.36 0.98 13.51 0.73 0.36 0.23 0.027 0.478 1.063 
M-Pr 78.32 2.31 0.91 13.54 0.62 0.51 0.16 0.017 0.482 0.852 
M-V 5.80 76.48 1.54 13.10 1.83 0.27 0.03 0.06 0.316 0.193 
M-Py 79.99 2.73 0.87 11.67 0.59 0.34 0.06 0.027 0.398 1.363 
M-MS 78.29 1.89 0.94 14.30 0.65 0.34 0.04 0.015 0.515 0.721 
M-SF 78.11 1.88 0.91 14.32 0.65 0.34 0.08 0.015 0.561 0.801 
M-Sp 1.55 89.32 1.43 6.23 0.93 0.03 0.06 0.343 0.0119 0.259 
M-CG 3.05 87.69 1.87 6.37 0.19 0.08 0.12 0.401 0.094 0.312 
M-Cc 77.65 2.40 0.99 13.56 0.68 0.34 0.05 0.080 0.540 1.410 
M-Kc 3.32 88.02 1.48 6.25 0.12 0.04 0.05 0.334 0.012 0.537 
M-Ap 1.54 90.20 1.42 6.22 0.12 0.03 0.05 0.334 0.012 0.243 
M-L 75.43 1.75 0.83 15.49 0.62 0.31 0.04 0.016 0.454 2.767 
M-T 3.05 87.23 1.61 6.23 1.11 0.03 0.05 0.335 0.012 0.525 

M-CS 76.25 2.07 2.97 13.72 0.77 0.36 0.07 0.015 0.4883 0.822 
 
Principal Component Analysis (PCA) was used in exploratory data analysis. The 

procedure was performed by Eigenvalue decomposition of a data correlation matrix [39]. The 
first component has the largest possible variance. The maximum separation among clusters of 
parameters is acquired by this analysis. Considerable reduction in a number of variables and 
the detection of structure in the relationship between measuring parameters is achieved. The 
full auto scaled data matrix consisting of different mortar mixtures was submitted to the PCA, 
which resulted in spatial relationship between processing parameters (mortar properties) and 
formed graphic differentiation between observed samples.  

The assessing of CA and PCA of the acquired results was executed using Statistica 
software version 12 (StatSoft Inc. 2013, USA)®. 

Artificial Neural Network model (ANN) was used in the prediction of values of the 
experimental data i.e., tested properties (PA, HH, IST, FST, CCS-d, CFS-d, HCS-T, SK, and 
SR). The database for ANN was randomly divided into: training data (60 %), cross-validation 
(20 %), and testing data (20 %). The cross-validation data set was used to test the 
performance of the network, while training was in progress as an indicator of the level of 
generalization and the time at which the network has begun to over-train. The testing data set 
was used to examine the network generalization capability. To improve the ANN behavior, 
both input and output data were normalized. In order to obtain good network behavior, it is 
necessary to conduct a trial-and-error procedure and also to choose the number of hidden 
layers, and the number of neurons in hidden layer(s). In this analysis, a Multilayer Perceptron 
Model (MLP) comprised three layers (input, hidden and output). These architectures were 
used in parameters anticipation, and have been certified as entirely proficient of 
approximating nonlinear functions [40]. Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
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algorithm was engaged for solution of the unconstrained nonlinear optimization in the ANN 
modelling [41]. 
 The weight coefficients and biases connected to the hidden and output layers of the 
ANN model are introduced in matrices and vectors W1 and B1, and W2 and B2, respectively. 
The neural network model can be outlined by matrix notation: 
 

1 2 2 1 1 2( ( ) )= ⋅ ⋅ + +Y f W f W X B B              (1) 
 
where Y is the matrix of the outputs, f1 and f2 are transfer functions in the hidden and output 
layers, accordingly, and X is the matrix of inputs [42].  
 The optimum count of hidden neurons was selected upon minimizing the divergence 
among anticipated ANN values and desired outputs, using r2 during testing as a performance 
indicator. 
 The Yoon’s global sensitivity equation was used to calculate the relative impact of 
the input parameters on output variables, according to weight coefficients of the developed 
ANN models [43]: 
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where: w - weight coefficient in ANN model, i - input variable, j - output variable, k - hidden 
neuron, n - number of hidden neurons, m - number of inputs. 

 

The numerical verification of the developed models was tested using coefficient of 
determination (r2), reduced chi-square (χ2), mean bias error (MBE), root mean square error 
(RMSE) and mean percentage error (MPE). These commonly used parameters can be 
calculated as follows: 
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where xexp,i stands for the experimental values and xpre,i are the predicted values calculated by 
the model for these measurements. N and n are the number of observations and constants, 
respectively. 
 
 
3. Results and Discussion 
 
 The following properties of the experimental mortar samples were monitored: 
pozzolanic activity for mineral additive (PA), heat of hydration (HH), J/g; initial setting time 
(IST), min; final setting time (FST), min; cold compressive strength after d = 3, 7, 14, 21, and 
28 days (CCS-d), MPa; cold flexural strength after d = 3, 7, 14, 21, and 28 days (CFS-d), 
MPa; hot compressive strength after firing at T=100, 500, 800, and 1000ºC (HCS-T), MPa; 
refractoriness (SK and SK/T, °C); and sulphate resistance (SR), MPa. Experimentally 
obtained data are presented in Table III. 
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3.1. Correlation analysis 
 

The correlation analysis was employed in investigation of the relations between 
output variables i.e., properties of experimental mortars. The obtained results are visualized 
and displayed in Figure 1. It can be noticed that the darker blue color of the squares, which 
shows the two variables relation, presents a stronger correlation between these variables. On 
the other hand, the lighter tone suggests a certain difference between two variables. 

  

 
 

Fig. 1. Correlation analysis between output variables (mortar properties). 
 
 As seen in Fig. 1, the heat of hydration (HH) has strong influence over early 
mechanical strengths. Both compressive and flexural strengths of all investigated mortars, 
cement based- and altered mortar samples alike, are directly influenced by HH parameter. The 
strongest relation is visible for compressive and flexural strengths measured after three days 
(CCS-3 and CFS-3), and it decreases over time. Relations between HH and mechanical 
strengths developed from 7th to 14th day - CCS-7, CCS-14, CFS-7, and CFS-14, respectively, 
are marked as strong by exhibiting correlation coefficient value between 0.8 and 1. Initial and 
final setting times (IST, FST) are indirectly correlated to early compressive and flexural 
strengths (CCS-3, CCS-7, CFS-3, CFS-7) since their correlation coefficient ranges between -
0.8 and -0.9. IST and FST parameters have slight influence over hot compressive strengths 
(HCS-100, HCS-500, HCS-800, and HCS-1000) as their correlation coefficients vary between 
-0.4 and -0.6. Cold compressive strengths are directly correlated to flexural strengths 
(correlation coefficients = 0.8-1), as well as with hot compressive strengths (correlation 
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coefficients = 0.6-0.8). Refractoriness is directly dependent on hot compressive strengths 
(correlation coefficients = 0.7-0.9). Sulphate resistance is directly correlated to compressive 
and flexural strengths (correlation coefficients = 0.6-0.7). 
 
Tab. III Experimentally obtained properties of cement mortars and altered mortars.  

 PA HH IST FST CCS-
3 

CCS
-7 

CCS
-14 

CCS
-21 

CCS
-28 

CF
S-3 

CF
S-7 

CFS
-14 

CFS
-21 

CFS
-28 

HCS-
100 

HCS-
500 

HCS
-800 

HCS-
1000 SK SK-T SR 

M-OPC 5 320 165 225 31.2
5 

41.1
5 47.2 49.0

5 50.3 6.8 7.5 8.7 9.4 9.5 48.4 27.9 20.1 21.5 9 1280 1 

M-MHHC 5 275 180 255 22.7 31.9 48.1 53.6 65.1 5.2 5.7 6.4 12.4 14.3 40.5 25.3 15.4 15.5 8 1250 2 

M-HESC 5 375 105 160 42.6 55.2 59.4 61.8 63.7 8.9 9.5 11.6 12.7 13.5 39.8 26.1 16.7 16.8 8 1250 1 

M-LHHC 5 260 95 480 13.7 17.9 26.8 42.8 49.8 4.1 4.5 5.7 7.2 9.4 48.3 27.7 20.2 20.9 9 1280 2 

M-HSCR 5 275 160 230 14.1 16.9 32.4 48.3 51.7 6.6 7.3 8.5 9.2 9.5 48.1 27.3 20 20.5 10 1300 3 

M-CAC 5 370 90 155 53.8 67.8 75.2 81.3 84.1 9.3 11.
8 14.2 15.9 16.2 81.1 71.2 63.1 45.3 20 1530 3 

M-HAC 5 375 90 155 61.7 78.5 83.5 87.9 91.5 9.8 12.
5 15.3 17.1 18.7 90.8 81.4 65.2 55.5 34 1750 3 

M-FA 4 360 110 170 45.3 56.2 60.8 61.9 63.9 8.9 9.3 11.3 12.5 13.6 53.7 41.6 30.2 31.3 20 1530 2 

M-BA 3 355 115 185 40.0
5 51.1 55.3 57.9 60.1 8.7 9.1 11.1 12.1 13.2 53.65 41.7 30.2 31.3 20 1530 2 

M-Z 4 355 115 185 40.9
5 52.7 56.8 58.1 60.8 8.8 9.3 11.2 12.3 13.3 53.8 41.8 30.2 31.4 20 1530 2 

M-B 4 350 120 190 39.1
2 49.5 54.2 55.4 58.7 8.6 9.1 10.9 11.8 13.1 53.2 41.2 30.1 31.3 19 1520 2 

M-Pr 1 275 175 250 23.1 29.2 32.4 37.9 39.6 5.1 5.4 5.9 6.4 7.1 36.1 35.2 32.8 32.6 26 1580 1 

M-V 1 275 175 245 27.3 33.2 38.6 41.2 44.1 5.2 5.7 6.3 6.7 7.3 40.2 35.1 33.4 33.2 16 1460 1 

M-Py 3 325 165 230 31.4 41.5 46.9 48.9 50.5 6.7 7.4 8.5 9.3 9.5 48.5 43.2 40 40.2 26 1580 2 

M-MS 4 360 110 160 45.5 56.9 61.2 64.2 65.1 8.8 9.1 9.9 10.5 11.3 57.8 49.2 38.9 39 20 1530 2 

M-SF 4 355 115 170 45.3 56.4 60.7 62.3 62.5 8.7 9 9.7 10.3 11.2 56.8 47.8 36.1 36 20 1530 2 

M-Sp 2 375 90 155 57.8 73.1 78.2 84.5 90.1 9.5 12 14.8 16.5 17.8 88.6 80.1 63.7 50.3 34 1750 3 

M-CG 3 370 90 155 53.9 68.9 76.2 82 85.1 9.3 11.
8 14.5 16.3 16.8 82.5 73.5 64.2 47.3 19 1520 2 

M-Cc 3 370 90 155 54.1 69.1 76.9 82.5 85.8 9.3 11.
9 14.6 16.5 17 85.5 80.2 64.8 49.9 27 1610 2 

M-Kc 3 350 125 200 37.2 47.7 50.8 53.1 57.8 7.8 8.3 10.2 10.9 11.7 54.8 43.8 35.2 33.4 30 1670 2 

M-Ap 3 375 90 155 62.1 78.9 84.2 88.5 93.2 9.7 12.
3 14.9 17 18.6 88.9 85.1 64.2 50.1 38 1850 3 

M-L 4 370 105 160 46.5 59.3 61.2 62.3 62.5 8.8 9.3 9.4 9.5 9.5 35.2 17.5 13.1 12.8 7 1230 1 

M-T 1 270 100 300 48 49.3 53.6 65.2 71.3 8.2 8.2 8.5 9.4 12.9 67.5 62.3 55.2 53.2 13 1380 2 

M-CS 3 300 180 255 23.5 35.1 49.2 55.5 63.8 5.1 5.5 6.3 10.5 11.8 55 20.6 17.1 16.5 9 1200 2 

 
3.2. Cluster analyses of experimental mortars   
 
 A dendrogram of experimental mortars using complete linkage as an amalgamation 
rule and the city block (Manhattan) distance as a measure of the nearness among samples is 
illustrated in Fig. 2.  
 The dendrogram built on the experimental data explained appropriate distinctiveness 
between samples. There are three clusters of samples. As presented in Fig. 2, there is high 
resemblance between M-OPC, M-HSCR, M-MHHC, M-HESC, and M-LHHC mortars. Only 
mortars based on masonry cements are in this cluster. This group of samples that shapes the 
first cluster is described by the most notable IST and FST values, as well as high early and 
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final compressive (CCS-3, CCS-7, CCS-14, CCS-21, CCS-28) and flexural strengths (CFS-3, 
CFS-7, CFS-14, CFS-21, CFS-28). Altered mortars with addition of copper slag, limestone, 
and talc (M-CS, M-L, M-T) are conjoined in this cluster due to the similarity in the observed 
outputs (high IST, FST, CCS, and CFS).  
 The second cluster associated the following altered mortars: M-FA, M-MS, M-SF, M-
BA, M-Z, M-B, M-Py, M-Kc, M-Pr, and M-V. The class of mortar samples that pertains to 
the second cluster exhibited values of variables that were slightly below values displayed for 
cement mortars from the first cluster. This was expected because mineral raw materials 
employed in the design of mortars as a cement replacement tend to deteriorate performances 
of mortar at least to a certain extent. However, here it was showed (Table. III, Fig. 2) that the 
application of economical primary and/or secondary mineral additives such as fly ash, bottom 
ash, zeolite, bentonite, perlite, vermiculite, pyrophyllite, micro silica, silica fume, and kaolin 
clay induce comparatively good physico-mechanical and thermo-mechanical properties of 
mortars. Namely, this cluster is directly connected to first cluster indicating strong similarities 
between standard cement mortars and altered mortars based on additives of primary and 
secondary origin. The given group of mortars is depicted by high compressive and flexural 
strengths, with accent on towering late CCS-28 and FCS-28 strengths. Even though altered 
mortars from cluster two are classified as masonry mortars, they also exhibit excellent thermal 
properties such as high refractoriness and relatively high hot compressive strengths (which 
grouped them together in cluster two and distinguished them from standard masonry mortars 
from cluster one).  
 The remaining mortar samples (M-CAC, M-HAC, M-CG, M-Cc, M-Sp, and M-Ap) 
represent the third cluster since all of the samples are depicted by high values of HH, SR, SK-
T, SK, HCS-100, HCS-500, HCS-800, and HCS-1000. The cement mortars that also belong 
to this group i.e., cluster three, are high-temperature resistant mortars based on calcium-
aluminate and high-aluminate cement (M-CAC and M-HAC). Mineral additives such as 
spinel, chamotte, calcinated clay, and alumina can be considered as appropriate for high-
temperature applications since they induced high hot compressive strengths in observed 
mortar samples.   
 

 
 

Fig. 2. Complete-linkage dendrogram of cement mortars and altered mortars. 
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3.3. Principal component analysis (PCA) of outputs 
 
 The PCA permitted an extensive depletion in a number of variables and the 
uncovering of structure in the association between measured parameters and chosen outputs 
(Fig. 3). As can be seen, there is a clean segregation of the 24 trials. Quality outcomes show 
that the first two principal components, accounting for 81.78 % of the total variability can be 
considered sufficient for data representation. Variables CCS-3, CCS-7, CCS-14, CCS-21, 
CCS-28, CFS-3, CFS-7, CFS-14, CFS-21, CFS-28, and HCS-100, HCS-500, HCS-800, HCS-
1000 supplied the most negatively to the first principal component estimation (4.2-6.3 % of 
total variance, based on correlation). The most positive impact to the second principal 
component was identified for PA (22.2 %) and HH (8.2 %), while the most negative effect to 
the second principal component was esteemed for HCS-500, HCS-800 and HCS-1000 (5.6, 
8.4 and 12.6 %, accordingly) and FST (5.1 %).  
 The effects of processing parameters are illustrated in Fig. 3, with higher IST and 
FST values at the right side of graphic, while the more HH, SR, SK, SK-t, CCS-7, CCS-14, 
CCS-21, CCS-28; CFS-3, CFS-7, CFS-14, CFS-21, CFS-28, HCS-100, HCS-500, HCS-800, 
and HCS-1000 values are discovered at the left side of graphic. This is in agreement with 
Cluster Analysis. Namely, M-OPC, M-HSCR, M-MHHC, M-HESC, M-LHHC, M-CS, M-L, 
and M-T located on the right side of the graph showed the highest IST and FST values (also 
situated on the right side of PCA biplot). M-T sample is set somewhat apart from this group 
because it showed slight difference in the observed characteristics i.e., higher value of final 
setting time. M-FA, M-MS, M-SF, M-BA, M-Z, M-B, M-Py, M-Kc, M-Pr, and M-V samples 
are grouped around center of the diagram exhibiting good compressive and flexural strengths. 
Finally, M-CAC, M-HAC, M-CG, M-Cc, M-Sp, and M-Ap are on the left side of the graph 
where the highest cold and hot mechanical strengths are placed. These mortars belong to 
group of thermally resistant materials. 
 PCA graphic explained over-all good discernment attitude between all trials, which 
were discovered distinct due to variants in output variables measured in samples.  
 

 
 

Fig. 3. Biplot for mechanical characteristics of cement mortars and altered mortars. 
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3.4. Neurons in the ANN hidden layer 
 
 Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, conducted in StatSoft 
Statistica’s evaluation routine, was used for ANN modeling. The optimum number of hidden 
neurons was selected in order to minimize the distinction among expected ANN values and 
intended outputs. SOS was applied throughout testing as accomplishment indicator. In line 
with ANN performance (sum of r2 and SOSs for all variables in one ANN), it was seen that 
the optimal number of neurons in the hidden layer is 13 (network MLP 10-13-21), when 
obtaining high values of r2 (0.999; 0.998 and 0.999 for training, testing and validation 
performances, respectively) and also low values of SOS (Table IV).  
 
Tab. IV ANN summary (performance and errors), for training, testing and validation cycles. 
 
Network 
name 

Performance Error 
Training  Test Validation  Training  Test Validation 

MLP 10-
13-21 

0.999 0.998 0.999 15.171 16.254 15.925 

Training algorithm 
Error function Hidden activation Output 

activation 
BFGS 724 SOS Logistic Exponential 

*Performance term represent the coefficients of determination, while error terms indicate a lack of data for the ANN model. 

 

 The ANN model is complex (437 weights-biases) according to the high nonlinearity 
of the developed system [42]. The r2 values between experimental measurements and ANN 
model outputs, PA, HH, IST, FST, CCS-3, CCS-7, CCS-14, CCS-21, CCS-28, CFS-3, CFS-7, 
CFS-14, CFS-21, CFS-28, HCS-100, HCS-500, HCS-800, HCS-1000, SK, SK-T, and SR 
were between 0.999 and 1.000, during the training period. 
 Table V presents the elements of matrix W1 and vector B1 (presented in the bias row), 
and Table VI presents the elements of matrix W2 and vector B2 (bias) for the hidden layer. 

 
Tab. V Elements of matrix W1 and vector B1 (presented in the bias row). 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 

SiO2 -5.773 24.537 -4.817 -17.630 -5.157 1.446 24.942 33.087 46.500 -18.701 -6.117 -3.169 9.364 

Al2O3 -36.026 -3.678 -44.286 -25.270 -47.336 -50.056 -47.296 24.828 -45.254 -46.460 -36.108 -49.299 -39.618 

Fe2O3 8.081 -34.571 -5.593 -8.966 32.391 11.297 15.435 21.461 -28.841 -10.952 9.197 39.762 6.548 

CaO 51.404 8.092 20.413 20.807 20.184 23.276 30.123 34.755 34.386 40.260 81.709 36.625 29.221 

MgO -11.381 -30.164 28.248 -40.618 -22.348 19.330 -27.738 1.004 27.460 -5.031 15.726 -13.161 -22.644 

K2O 27.161 -50.482 8.892 58.693 58.131 46.657 44.097 44.902 37.098 49.003 31.672 18.671 -13.208 

Na2O -21.998 3.545 -1.200 7.409 3.199 -2.838 7.452 3.363 -1.004 1.889 23.565 0.474 -17.092 

TiO2 -9.410 3.259 -5.069 11.798 -13.554 -56.399 -33.918 -9.967 8.383 1.835 -21.072 -13.392 -57.132 

SO3 24.166 12.892 2.166 -0.507 -9.584 -15.963 -4.513 -7.348 -23.750 -1.554 -68.467 -3.980 -4.545 

LoI -25.021 -33.207 -22.448 43.478 -15.713 -1.628 -3.358 0.767 -44.252 17.362 -60.493 23.023 2.266 

Bias -7.967 -3.515 3.977 -24.081 -0.966 -21.491 -8.036 -39.231 -20.873 -31.606 -15.233 3.201 -24.058 

  
 The quality of the model fit was investigated and the residual analysis of the 
established model was exposed in Table VII.  
 The ANN model had a negligible lack of fit tests, which means the model 
satisfactorily predicted the quality of cements and additives. A high r2 is illustrative that the 
variation was constituent for and that the data fitted the proposed model effectively. 
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Tab. VI Elements of matrix W2 and vector B2 (presented in the bias column). 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 Bias 

PA -16.278 30.841 -91.579 -26.836 34.290 -39.050 -2.625 2.837 -1.435 13.485 43.447 -6.391 62.178 -0.718 
HH 7.642 1.328 -6.256 5.184 1.218 0.422 -0.278 10.393 4.280 0.563 -13.942 -5.958 -7.818 0.015 
IST 26.278 -10.519 -9.314 1.637 -3.275 9.398 22.297 4.859 12.477 -3.210 -8.643 -26.761 -17.309 -5.385 
FST 16.086 -21.088 10.339 -6.920 -18.984 7.324 44.644 -9.510 1.380 0.951 14.475 -28.205 -19.586 -11.890 
CCS-
3 8.496 2.477 -12.742 -11.334 6.445 19.436 -1.658 12.162 8.201 3.720 -19.581 -9.451 13.040 0.003 

CCS-
7 -2.316 3.027 -13.497 -31.707 16.392 33.947 -2.457 -8.960 4.307 12.207 -7.321 -3.008 30.616 -0.002 

CCS-
14 7.921 1.669 -10.723 -4.697 8.342 9.182 -2.202 8.123 8.349 0.385 -14.895 -8.494 7.872 -0.008 

CCS-
21 7.719 1.231 -10.197 -0.980 13.039 2.045 -3.367 4.002 9.832 -1.060 -14.152 -8.756 4.977 0.004 

CCS-
28 6.725 1.061 -10.107 -3.537 12.992 3.356 -2.894 3.636 9.512 -1.056 -12.573 -8.917 8.864 0.003 

CFS-
3 20.003 2.409 -3.139 25.217 -21.643 -11.100 -0.187 51.599 6.867 -11.555 -33.185 -12.761 -16.886 -0.027 

CFS-
7 20.821 2.658 -4.677 25.182 -20.467 -10.897 -1.305 51.749 7.938 -11.722 -33.829 -13.033 -16.336 -0.031 

CFS-
14 20.445 2.638 -3.253 28.772 -23.463 -15.806 -1.402 55.909 7.320 -12.099 -35.106 -12.875 -19.675 -0.038 

CFS-
21 0.450 1.608 -4.337 -5.257 4.224 0.088 -3.086 6.178 3.286 -0.219 -6.455 -2.558 11.470 -0.014 

CFS-
28 1.783 0.964 -7.136 -8.844 10.049 1.841 -2.635 3.862 6.527 0.262 -8.669 -6.133 15.713 -0.011 

HCS-
100 -18.706 2.696 -3.958 -36.258 14.714 18.243 -4.902 -18.972 -1.836 8.384 17.088 6.180 -42.329 -0.041 

HCS-
500 -1.439 0.121 -6.061 -1.955 9.259 -0.942 -2.781 -2.315 6.303 1.168 -1.539 -4.302 -3.829 -0.022 

HCS-
800 -8.939 1.117 -1.934 -12.440 6.951 6.482 -3.896 -11.499 -0.324 4.243 8.917 4.259 -28.322 -0.021 

HCS-
1000 -22.429 1.946 -0.663 -33.039 8.306 16.169 -3.848 -18.843 -4.269 8.603 22.935 8.840 -40.507 -0.117 

SK 10.854 -6.497 -23.241 6.876 27.272 -9.957 4.235 -3.793 26.802 0.881 -9.604 -29.223 -12.888 0.019 
SK-T 15.922 -5.234 -21.741 8.370 24.507 -5.566 3.699 -0.870 24.324 -0.982 -15.112 -26.886 -7.272 -0.007 
SR 34.723 -2.247 -0.880 -66.442 -27.336 -54.253 0.778 66.151 16.327 -45.476 -32.347 -22.889 71.610 0.005 

 
Tab. VII The "goodness of fit" tests for the developed ANN model. 

 χ2 RMSE MBE MPE r2 Residual analysis 
Skewness Kurtosis Average SD 

PA 0.000 0.002 0.000 0.047 1.000 -1.271 3.054 0.000 0.002 
HH 12.213 1.427 -0.007 0.312 0.999 0.845 1.979 -0.005 1.262 
IST 0.697 0.341 -0.098 0.248 1.000 1.307 2.911 -0.074 0.292 
FST 16.437 1.655 0.038 0.503 1.000 -0.485 5.355 0.028 1.464 

CCS-3 0.610 0.319 -0.012 0.679 1.000 1.550 5.078 -0.009 0.282 
CCS-7 0.236 0.198 -0.010 0.373 1.000 0.353 1.703 -0.008 0.175 
CCS-14 1.586 0.514 -0.008 0.725 0.999 -0.993 1.396 -0.006 0.455 
CCS-21 0.877 0.382 -0.026 0.565 1.000 0.137 0.176 -0.019 0.338 
CCS-28 1.199 0.447 -0.013 0.622 0.999 -0.274 0.865 -0.010 0.395 
CFS-3 0.006 0.031 0.000 0.350 1.000 -0.355 0.011 0.000 0.027 
CFS-7 0.011 0.043 0.001 0.406 1.000 -0.374 1.837 0.001 0.038 

CFS-14 0.022 0.061 -0.005 0.550 1.000 0.622 0.711 -0.004 0.054 
CFS-21 0.020 0.058 -0.002 0.324 1.000 -0.619 2.317 -0.001 0.051 
CFS-28 0.068 0.106 0.003 0.536 0.999 0.645 2.316 0.002 0.094 

HCS-100 2.830 0.687 -0.014 0.932 0.999 -0.348 2.692 -0.011 0.607 
HCS-500 3.481 0.762 0.028 1.280 0.999 -0.164 1.263 0.021 0.673 
HCS-800 0.541 0.300 -0.008 0.666 1.000 0.214 1.762 -0.006 0.266 
HCS-1k 2.605 0.659 0.067 1.620 0.998 1.816 4.383 0.051 0.581 

SK 1.691 0.531 0.104 2.251 0.998 3.087 13.067 0.078 0.463 
SK-T 197.611 5.739 -0.169 0.268 0.999 -0.385 2.402 -0.127 5.075 
SR 0.000 0.004 0.000 0.138 1.000 -0.252 2.407 0.000 0.004 

 
 The mean and the standard deviation of residuals have also been analyzed. The mean 
of residuals for ANN model for PA, HH, IST, FST, CCS-3, CCS-7, CCS-14, CCS-21, CCS-
28, CFS-3, CFS-7, CFS-14, CFS-21, CFS-28, HCS-100, HCS-500, HCS-800, HCS-1000, SK, 
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SK-T, and SR prediction were: 0.000; -0.005; -0.074; 0.028; -0.009; -0.008; -0.006; -0.019; -
0.010; 0.000; 0.001; -0.004; -0.001; 0.002; -0.011; 0.021; -0.006; 0.051; 0.078; -0.127 and 
0.000, respectively, while the standard deviations were: 0.002; 1.262; 0.292; 1.464; 0.282; 
0.175; 0.455; 0.338; 0.395; 0.027; 0.038; 0.054; 0.051; 0.094; 0.607; 0.673; 0.266; 0.581; 
0.463; 5.075 and 0.004. These results revealed a good estimation to a normal distribution 
around zero with a probability of 95% (2•SD), which means a good generalization ability of 
ANN model for the range of observed experimental values. 
 
3.5. Sensitivity analysis 
 

 
 

Fig. 4. Relative influence in outputs (mortar properties) according to changes in input 
variables (chemical composition). 
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 In order to entry the impacts of variations in the outputs in line with the variations in 
the inputs, a sensitivity analysis was accomplished. The greater effect recorded in the output 
means more augmented sensitivity in respect to the input. The effects of the input factors over 
the outputs are expressed in Fig. 4, by evaluated changes in outputs, for infinitesimal changes 
in inputs. Acquired values corresponded to degree of experimental errors, and also showed 
the inputs influence on outputs.  
 As it is illustrated in Fig. 4., PA parameter was mostly influenced by CaO. The 
changes in the contents of Al2O3 and SiO2 performed lesser effect on the pozzolanic activity 
of a mineral additive. Presence of magnesium and potassium negatively influenced PA.  
 The heat of hydration (HH) was most significantly influenced by Al2O3 content. 
Calcium oxide detected in the observed mineral additives had negative effect on HH. Initial 
setting times (IST) were mostly influenced by K2O i.e., altered mortars with most significant 
variations in potassium content. Variations in final setting times (FST) were determined 
through changes in greater number of oxides: K2O, Al2O3, CaO, and MgO. 
 Variations registered for compressive strengths (CCS) showed interesting route over 
twenty-eight days period. CCS-3 was strongly influenced by SiO2 content (R.I. = 20 %). 
CCS-7 was negatively influenced by Al2O3 content (R.I = -25%). CCS-14, CCS-21, and CSS-
28 were equally influenced by SiO2 (R.I. = 20%), while R.I. of calcium and magnesium 
oxides varied from 7 % to 15 % to 10 %, respectively.  
 Sensitivity analysis diagrams showed no significant difference for flexural strengths 
up to 14th day of testing. CFS-3, CFS-7, and CFS-14 were mostly influenced by Al2O3 (R.I. 
being approximately 25 %), followed by SiO2 (R.I. = 10 %). CFS-21 and CFS-28 were mostly 
influenced by alternations in SiO2 content (R.I. = 20 %). 
 Hot compressive strength measured upon firing at 100°C was strongly influenced by 
variation of MgO content (R.I. = 22 %). Variations in LoI had the strongest negative influence 
on this parameter (R.I. = -18 %). Variations in CaO (R.I. = -18 %), TiO2 (R.I. = 19%) and LoI 
(R.I. = -10 %) exhibited the strongest influence over HCS-500 strength. HCS-800 was 
determined by variations in SiO2 (R.I. = -10 %), Al2O3 (R.I = 5 %), CaO (R.I. = -12 %), MgO 
(R. I. = 19 %), TiO2 (R.I. = 17 %), and LoI (R.I = 13 %). HCS-1000 was similarly influenced 
by variations of the same oxides: SiO2 (R.I. = -7 %), Al2O3 (R.I = 3 %), CaO (R.I. = -6 %), 
MgO (R. I. = 21 %), TiO2 (R.I. = 17 %), and LoI (R.I = 17 %). 
 Variations of Fe2O3 and K2O performed the strongest influence over refractoriness. 
Sulphate resistance of observed mortar samples was affected by variations in SiO2, Al2O3, 
K2O, SO3 and LoI contents.  
 
 
4. Conclusion 
 

Analytical analyses and Artificial neural network (ANN) modeling were employed to 
foresee the quality of mortars designed on given seven types of cement and seventeen mineral 
additives. The impacts that chemical compositions of implemented raw materials are making 
on the quality (properties) of the designed mortars were assessed and evaluated.  

The CA dendrogram built on the experimental data and PCA biplot explained 
appropriate distinctiveness between samples by creating three groups of mortars. The first 
group associated mortars based on masonry cements due to high early and final compressive 
and flexural strengths. Altered mortars with addition of copper slag, limestone, and talc were 
conjoined in this cluster due to the similarity in setting times. The second group distinguished 
and separated altered mortars (M-FA, M-MS, M-SF, M-BA, M-Z, M-B, M-Py, M-Kc, M-Pr, 
and M-V). The second cluster was directly connected to first cluster indicating strong 
similarities between standard cement mortars and altered mortars based on mineral additives 
of primary and secondary origin. The given group of mortars is depicted by high compressive 
and flexural strengths, but also excellent thermal properties (refractoriness and hot 
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compressive strength). The remaining mortar samples (mortars based on calcium-aluminate 
and high-aluminate cement, and mortars altered by addition of spinel, chamotte, calcinated 
clay, and alumina) represent the third cluster which is depicted by high values of hot 
compressive strength, refractories, and sulphate resistance.  

Impacts of variations in the outputs in line with the variations in the inputs were 
determined via sensitivity analysis. Variations in CaO conveyed the greatest influence on 
pozzolanic activity. The heat of hydration was influenced by Al2O3 content. Setting times 
were mostly influenced by K2O. Early and final compressive strengths were positively 
influenced by SiO2. Only compressive strength measured after seven days was negatively 
influenced by Al2O3 content. Early flexural strengths were influenced by Al2O3, while final 
strengths were mostly influenced by alternations in SiO2 content. Hot compressive strength 
(100°C) was influenced by variation of MgO content. Compressive strength (1000°C) was 
additionally influenced by variations in the SiO2, Al2O3, CaO, and TiO2. Variations of Fe2O3 
and K2O performed the strongest influence over refractoriness. Sulphate resistance of 
observed mortar samples was affected by variations in SiO2, Al2O3, K2O, SO3 and LoI 
contents.  

The obtained ANN outputs highlight the high suitability level of anticipation, i.e., 
0.999 during the training period, which can be regarded appropriately enough to correctly 
predict the observed outputs in a wide range of experimental parameters. The developed ANN 
model displays high predictive accuracy and can replace or be used in combination with 
standard destructive tests thereby saving the construction industry time, resources, and capital. 
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Сажетак: Предвиђање перформанси грађевинских материјала а тиме и оптимизација 
њихових састава коришћењем модела за машинско учења је есенцијални део 
савременог грађевинарства. У овом раду је спроведена прогноза понашања малтера 
заснована на примени модела вештачких неуронских мрежа (АНН). Добијени модел се 
употребљава за процену дизајна и карактеристика седамнаест грађевинских или 
високо-температурних малтера. Примењено је седам врста цемента. Седамнаест 
минералних адитива примарног и секундарног порекла употребљене су у малтерним 
мешавинама. Анализа кластера и анализа главних компоненти означиле су групе 
сличних малтера чији су састав и својства измењени употребом минералних адитива и 
груписале их према специфичности намене на основу разматраних карактеристика. 
Модел вештачких неуронских мрежа је коришћен за предвиђање квалитета малтера. 
Процењени су и прогнозирани утицаји које хемијски састав сировина има на квалитет 
малтера. Добијени АНН излази имају висок ниво антиципације - 0,999 током периода 
обуке, што се може сматрати задовољавајуће за прецизно предвиђање резултата у 
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широком опсегу процесних параметара. Развијени АНН модел показује високу тачност 
предвиђања и може да замени или да се користи у комбинацији са стандардним 
деструктивним тестовима чиме се штеди време, ресурси и капитал у грађевинској 
индустрији. Добре перформансе експерименталних цементних малтера су позитиван 
знак у смислу ширења праксе примене економичних минералних адитива у 
грађевинским материјалима и постизања смањења емисије угљен диоксида. 
Кључне речи: Грађевински цементи; високо-температурни цементи; индустријски 
нуспроизводи; економичне примарне сировине; циркуларна економија. 
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