Živojinović, Dragana

Link to this page

Authority KeyName Variants
d9741795-2ebe-4052-8201-7f728e890cd4
  • Živojinović, Dragana (4)
Projects

Author's Bibliography

Imobilizacija teških metalnih jona Zn2+, Ni2+, Pb2+ i Cu2+ u strukturi materijala na bazi cementa

Mijatović, Nevenka; Terzić, Anja; Miličić, Ljiljana; Živojinović, Dragana

(Inženjersko društvo za koroziju, Beograd, 2020)

TY  - JOUR
AU  - Mijatović, Nevenka
AU  - Terzić, Anja
AU  - Miličić, Ljiljana
AU  - Živojinović, Dragana
PY  - 2020
UR  - http://rims.institutims.rs/handle/123456789/388
AB  - Prirodni zeolit i bentonit korišćeni su kao mineralni dodaci u mešavinskom dizajnu ekološki sigurnih građevinskih materijala na bazi cementa. Ispitane su adsorptivne sposobnosti ove dve glinene sirovine, tj. njihov afinitet da imobiliziraju jone teških metala Zn2+, Ni2+, Pb2+ i Cu2+. Za eksperiment su pripremljeni pojedinačni i multi-rastvori Zn2+, Ni2+, Pb2+ i Cu2+ . Dobijeni rezultati su analizirani pomoću kinetičkih modela pseudo prvog i pseudo drugog reda. Analizirane su izoterme Langmuira i Freundlicha. Bentonit je pokazao bolji adsorpcioni afinitet od zeolita prema sva četiri ispitivana katjona. Kao dokaz, ispitano je ispitivanje ispiranja na sedam različitih veziva za cement sa različitim mineralnim dodacima (leteći pepeo, zeolit, bentonit). Eluati dobijeni na uzorcima cementa sa dodatkom letećeg pepela i gline (bilo zeolita ili bentonita) sadržavale su niže koncentracije jona Zn2+, Ni2+, Pb2+ i Cu2+ u odnosu na eluat dobijen na uzorcima cementnog veziva sa letećim pepelom. Razlog za dobijanje ovakvih rezultata su adsorpcioni i hidratacioni mehanizmi koji imobiliziraju teške metale u cementnim kompozitima.
AB  - Natural zeolite and bentonite were utilized as mineral additives in the mix-design of environmentally safe cement-based building materials. The adsorptive abilities of these two clayey raw materials, i.e. their affinity to immobilize heavy metal ions Zn2+, Ni2+, Pb2+ and Cu2+ were investigated. Singleand multi-solutions of Zn2+, Ni2+, Pb2+ and Cu2+ were prepared for the experiment. The obtained results were submitted to analysis via pseudo-first and pseudo-second order kinetic models. Langmuir and Freundlich isotherms were analyzed. Bentonite exhibited better adsorption affinity than zeolite towards all four investigated cations. As a proof, a leaching test was conducted on seven different cement binders with different mineral additives (fly ash, zeolite, bentonite). The leachates obtained on the samples of cement with addition of fly ash and clay (either zeolite or bentonite) contained lower concentrations of Zn2+, Ni2+, Pb2+ and Cu2+ ions than leachates obtained on the samples of cement binder with fly ash solely as a result of adsorption and hydration mechanisms that immobilized heavy metals within cementitious composites.
PB  - Inženjersko društvo za koroziju, Beograd
T2  - Zaštita materijala
T1  - Imobilizacija teških metalnih jona Zn2+, Ni2+, Pb2+ i Cu2+ u strukturi materijala na bazi cementa
T1  - Immobilization of heavy metal ions Zn2+, Ni2+, Pb2+ and Cu2+ in the structure of cement-based materials
EP  - 127
IS  - 2
SP  - 116
VL  - 61
DO  - 10.5937/zasmat2002116M
ER  - 
@article{
author = "Mijatović, Nevenka and Terzić, Anja and Miličić, Ljiljana and Živojinović, Dragana",
year = "2020",
abstract = "Prirodni zeolit i bentonit korišćeni su kao mineralni dodaci u mešavinskom dizajnu ekološki sigurnih građevinskih materijala na bazi cementa. Ispitane su adsorptivne sposobnosti ove dve glinene sirovine, tj. njihov afinitet da imobiliziraju jone teških metala Zn2+, Ni2+, Pb2+ i Cu2+. Za eksperiment su pripremljeni pojedinačni i multi-rastvori Zn2+, Ni2+, Pb2+ i Cu2+ . Dobijeni rezultati su analizirani pomoću kinetičkih modela pseudo prvog i pseudo drugog reda. Analizirane su izoterme Langmuira i Freundlicha. Bentonit je pokazao bolji adsorpcioni afinitet od zeolita prema sva četiri ispitivana katjona. Kao dokaz, ispitano je ispitivanje ispiranja na sedam različitih veziva za cement sa različitim mineralnim dodacima (leteći pepeo, zeolit, bentonit). Eluati dobijeni na uzorcima cementa sa dodatkom letećeg pepela i gline (bilo zeolita ili bentonita) sadržavale su niže koncentracije jona Zn2+, Ni2+, Pb2+ i Cu2+ u odnosu na eluat dobijen na uzorcima cementnog veziva sa letećim pepelom. Razlog za dobijanje ovakvih rezultata su adsorpcioni i hidratacioni mehanizmi koji imobiliziraju teške metale u cementnim kompozitima., Natural zeolite and bentonite were utilized as mineral additives in the mix-design of environmentally safe cement-based building materials. The adsorptive abilities of these two clayey raw materials, i.e. their affinity to immobilize heavy metal ions Zn2+, Ni2+, Pb2+ and Cu2+ were investigated. Singleand multi-solutions of Zn2+, Ni2+, Pb2+ and Cu2+ were prepared for the experiment. The obtained results were submitted to analysis via pseudo-first and pseudo-second order kinetic models. Langmuir and Freundlich isotherms were analyzed. Bentonite exhibited better adsorption affinity than zeolite towards all four investigated cations. As a proof, a leaching test was conducted on seven different cement binders with different mineral additives (fly ash, zeolite, bentonite). The leachates obtained on the samples of cement with addition of fly ash and clay (either zeolite or bentonite) contained lower concentrations of Zn2+, Ni2+, Pb2+ and Cu2+ ions than leachates obtained on the samples of cement binder with fly ash solely as a result of adsorption and hydration mechanisms that immobilized heavy metals within cementitious composites.",
publisher = "Inženjersko društvo za koroziju, Beograd",
journal = "Zaštita materijala",
title = "Imobilizacija teških metalnih jona Zn2+, Ni2+, Pb2+ i Cu2+ u strukturi materijala na bazi cementa, Immobilization of heavy metal ions Zn2+, Ni2+, Pb2+ and Cu2+ in the structure of cement-based materials",
pages = "127-116",
number = "2",
volume = "61",
doi = "10.5937/zasmat2002116M"
}
Mijatović, N., Terzić, A., Miličić, L.,& Živojinović, D.. (2020). Imobilizacija teških metalnih jona Zn2+, Ni2+, Pb2+ i Cu2+ u strukturi materijala na bazi cementa. in Zaštita materijala
Inženjersko društvo za koroziju, Beograd., 61(2), 116-127.
https://doi.org/10.5937/zasmat2002116M
Mijatović N, Terzić A, Miličić L, Živojinović D. Imobilizacija teških metalnih jona Zn2+, Ni2+, Pb2+ i Cu2+ u strukturi materijala na bazi cementa. in Zaštita materijala. 2020;61(2):116-127.
doi:10.5937/zasmat2002116M .
Mijatović, Nevenka, Terzić, Anja, Miličić, Ljiljana, Živojinović, Dragana, "Imobilizacija teških metalnih jona Zn2+, Ni2+, Pb2+ i Cu2+ u strukturi materijala na bazi cementa" in Zaštita materijala, 61, no. 2 (2020):116-127,
https://doi.org/10.5937/zasmat2002116M . .
2

Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach

Mijatović, Nevenka; Terzić, Anja; Pezo, Lato; Miličić, Ljiljana; Živojinović, Dragana

(Srpsko hemijsko društvo, Beograd, 2020)

TY  - JOUR
AU  - Mijatović, Nevenka
AU  - Terzić, Anja
AU  - Pezo, Lato
AU  - Miličić, Ljiljana
AU  - Živojinović, Dragana
PY  - 2020
UR  - http://rims.institutims.rs/handle/123456789/377
AB  - A modification of an analytical procedure for the energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb and Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as the leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via an "in-house" laboratory validation approach. The expanded uncertainties for the ten analysed elements were obtained for the entire working range of the EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of a chemometric in-house approach. The results obtained by the modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF could be used as an effective and reliable alternative method for analysis of cement leachates.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach
EP  - 1619
IS  - 12
SP  - 1605
VL  - 85
DO  - 10.2298/JSC200501067M
ER  - 
@article{
author = "Mijatović, Nevenka and Terzić, Anja and Pezo, Lato and Miličić, Ljiljana and Živojinović, Dragana",
year = "2020",
abstract = "A modification of an analytical procedure for the energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb and Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as the leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via an "in-house" laboratory validation approach. The expanded uncertainties for the ten analysed elements were obtained for the entire working range of the EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of a chemometric in-house approach. The results obtained by the modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF could be used as an effective and reliable alternative method for analysis of cement leachates.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach",
pages = "1619-1605",
number = "12",
volume = "85",
doi = "10.2298/JSC200501067M"
}
Mijatović, N., Terzić, A., Pezo, L., Miličić, L.,& Živojinović, D.. (2020). Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 85(12), 1605-1619.
https://doi.org/10.2298/JSC200501067M
Mijatović N, Terzić A, Pezo L, Miličić L, Živojinović D. Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach. in Journal of the Serbian Chemical Society. 2020;85(12):1605-1619.
doi:10.2298/JSC200501067M .
Mijatović, Nevenka, Terzić, Anja, Pezo, Lato, Miličić, Ljiljana, Živojinović, Dragana, "Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach" in Journal of the Serbian Chemical Society, 85, no. 12 (2020):1605-1619,
https://doi.org/10.2298/JSC200501067M . .
1
1

Novel Approach for Determination of Potentially Toxic Elements via ICP-OES in Aqueous Solutions of Building Materials with Industrial Byproduct Addition

Mijatović, Nevenka; Terzić, Anja; Pezo, Lato; Miličić, Ljiljana; Milosavljević, Aleksandra; Živojinović, Dragana

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2019)

TY  - JOUR
AU  - Mijatović, Nevenka
AU  - Terzić, Anja
AU  - Pezo, Lato
AU  - Miličić, Ljiljana
AU  - Milosavljević, Aleksandra
AU  - Živojinović, Dragana
PY  - 2019
UR  - http://rims.institutims.rs/handle/123456789/369
AB  - New global tendencies for waste materials reusing in building materials are imposing the request for improved performances of chemical analysis methods and the improvements of matrices used. A new method for optical emission spectrometry with inductively coupled plasma (ICP-OES) is developed and validated for the chemical analysis (35 elements: Al, Be, Cd, So, Cr, Cu, Fe, Mn, Mo, Ni, V, Mo, Zn, Pb , Bi, Si, Zr, W, As, Se, Sb, Sn, Ti, Ba, B, Ag, Mg, Ca, K, Na, S, P, Ga, In, Li) in leachate of fly ash. Validation performances and the uncertainty of measurement were resolved. Uncertainty of measurements were resolved by three routes: validation procedure, participation in proficiency testing (PT) schemes and standard method. The obtained method is a new simple and effective analyzing route for determination of undesired trace elements and their quantity comprised in leachates of fly ash, and leachates of building materials with addition of fly ash (cement binders and mortars). In order to prove its accuracy and precision, the developed method was employed on laboratory samples of cement binders and mortars. Results were compared with limit values provided in the standard. Multivariate analyses, i.e. cluster analysis and principal component analysis, were applied to establish interrelations between analyzed samples, and to certify the developed ICP-OES method.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Novel Approach for Determination of Potentially Toxic Elements via ICP-OES in Aqueous Solutions of Building Materials with Industrial Byproduct Addition
EP  - 444
IS  - 4
SP  - 429
VL  - 51
DO  - 10.2298/SOS1904429M
ER  - 
@article{
author = "Mijatović, Nevenka and Terzić, Anja and Pezo, Lato and Miličić, Ljiljana and Milosavljević, Aleksandra and Živojinović, Dragana",
year = "2019",
abstract = "New global tendencies for waste materials reusing in building materials are imposing the request for improved performances of chemical analysis methods and the improvements of matrices used. A new method for optical emission spectrometry with inductively coupled plasma (ICP-OES) is developed and validated for the chemical analysis (35 elements: Al, Be, Cd, So, Cr, Cu, Fe, Mn, Mo, Ni, V, Mo, Zn, Pb , Bi, Si, Zr, W, As, Se, Sb, Sn, Ti, Ba, B, Ag, Mg, Ca, K, Na, S, P, Ga, In, Li) in leachate of fly ash. Validation performances and the uncertainty of measurement were resolved. Uncertainty of measurements were resolved by three routes: validation procedure, participation in proficiency testing (PT) schemes and standard method. The obtained method is a new simple and effective analyzing route for determination of undesired trace elements and their quantity comprised in leachates of fly ash, and leachates of building materials with addition of fly ash (cement binders and mortars). In order to prove its accuracy and precision, the developed method was employed on laboratory samples of cement binders and mortars. Results were compared with limit values provided in the standard. Multivariate analyses, i.e. cluster analysis and principal component analysis, were applied to establish interrelations between analyzed samples, and to certify the developed ICP-OES method.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Novel Approach for Determination of Potentially Toxic Elements via ICP-OES in Aqueous Solutions of Building Materials with Industrial Byproduct Addition",
pages = "444-429",
number = "4",
volume = "51",
doi = "10.2298/SOS1904429M"
}
Mijatović, N., Terzić, A., Pezo, L., Miličić, L., Milosavljević, A.,& Živojinović, D.. (2019). Novel Approach for Determination of Potentially Toxic Elements via ICP-OES in Aqueous Solutions of Building Materials with Industrial Byproduct Addition. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 51(4), 429-444.
https://doi.org/10.2298/SOS1904429M
Mijatović N, Terzić A, Pezo L, Miličić L, Milosavljević A, Živojinović D. Novel Approach for Determination of Potentially Toxic Elements via ICP-OES in Aqueous Solutions of Building Materials with Industrial Byproduct Addition. in Science of Sintering. 2019;51(4):429-444.
doi:10.2298/SOS1904429M .
Mijatović, Nevenka, Terzić, Anja, Pezo, Lato, Miličić, Ljiljana, Milosavljević, Aleksandra, Živojinović, Dragana, "Novel Approach for Determination of Potentially Toxic Elements via ICP-OES in Aqueous Solutions of Building Materials with Industrial Byproduct Addition" in Science of Sintering, 51, no. 4 (2019):429-444,
https://doi.org/10.2298/SOS1904429M . .
1
3
4

Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites

Mijatović, Nevenka; Terzić, Anja; Pezo, Lato; Miličić, Ljiljana; Živojinović, Dragana

(Pergamon-Elsevier Science Ltd, Oxford, 2019)

TY  - JOUR
AU  - Mijatović, Nevenka
AU  - Terzić, Anja
AU  - Pezo, Lato
AU  - Miličić, Ljiljana
AU  - Živojinović, Dragana
PY  - 2019
UR  - http://rims.institutims.rs/handle/123456789/363
AB  - Adjustment and subsequent validation of energy-dispersive X-ray fluorescence (ED-XRF) method for cement based binders with addition of mineral raw materials (fly ash, zeolite and bentonite) was conducted. Eighteen chemical elements present in the material composition were analyzed: ten major elements (Si, Al, Fe, Ca, Mg, S, Na, K, Ti, P) and eight trace elements (Cr, Zn, Cu, As, Ni, Pb, Sr, Mn). Thirty-five samples of either certified reference materials or reference materials of cement, fly ash and clay were utilized during adjustment and optimization of the investigated ED-XRF procedure. The method was consecutively validated in terms of selectivity, precision, working range, linearity, accuracy, robustness, limits of detection and quantification. Thirty-two samples in total, i.e. three certified reference materials and twenty-nine reference materials, were simultaneously analyzed by ED-XRF and inductively coupled plasma optical emission spectrometry (ICP-OES). Comparison of the outputs of monitored methods showed infinitesimally small differences, as correlation coefficients were extremely good (approximate to 1), which highlighted ED-XRF as highly satiable alternative for ICP-OES for the chemical analysis of cement binders.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Spectrochimica Acta Part B-Atomic Spectroscopy
T1  - Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites
VL  - 162
DO  - 10.1016/j.sab.2019.105729
ER  - 
@article{
author = "Mijatović, Nevenka and Terzić, Anja and Pezo, Lato and Miličić, Ljiljana and Živojinović, Dragana",
year = "2019",
abstract = "Adjustment and subsequent validation of energy-dispersive X-ray fluorescence (ED-XRF) method for cement based binders with addition of mineral raw materials (fly ash, zeolite and bentonite) was conducted. Eighteen chemical elements present in the material composition were analyzed: ten major elements (Si, Al, Fe, Ca, Mg, S, Na, K, Ti, P) and eight trace elements (Cr, Zn, Cu, As, Ni, Pb, Sr, Mn). Thirty-five samples of either certified reference materials or reference materials of cement, fly ash and clay were utilized during adjustment and optimization of the investigated ED-XRF procedure. The method was consecutively validated in terms of selectivity, precision, working range, linearity, accuracy, robustness, limits of detection and quantification. Thirty-two samples in total, i.e. three certified reference materials and twenty-nine reference materials, were simultaneously analyzed by ED-XRF and inductively coupled plasma optical emission spectrometry (ICP-OES). Comparison of the outputs of monitored methods showed infinitesimally small differences, as correlation coefficients were extremely good (approximate to 1), which highlighted ED-XRF as highly satiable alternative for ICP-OES for the chemical analysis of cement binders.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Spectrochimica Acta Part B-Atomic Spectroscopy",
title = "Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites",
volume = "162",
doi = "10.1016/j.sab.2019.105729"
}
Mijatović, N., Terzić, A., Pezo, L., Miličić, L.,& Živojinović, D.. (2019). Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites. in Spectrochimica Acta Part B-Atomic Spectroscopy
Pergamon-Elsevier Science Ltd, Oxford., 162.
https://doi.org/10.1016/j.sab.2019.105729
Mijatović N, Terzić A, Pezo L, Miličić L, Živojinović D. Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites. in Spectrochimica Acta Part B-Atomic Spectroscopy. 2019;162.
doi:10.1016/j.sab.2019.105729 .
Mijatović, Nevenka, Terzić, Anja, Pezo, Lato, Miličić, Ljiljana, Živojinović, Dragana, "Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites" in Spectrochimica Acta Part B-Atomic Spectroscopy, 162 (2019),
https://doi.org/10.1016/j.sab.2019.105729 . .
9
3
8