Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200023/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200023 (Institut za tehnologiju nuklearnih i drugih mineralnih sirovina - ITNMS, Beograd) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200023 (Институт за технологију нуклеарних и других минералних сировина - ИТНМС, Београд) (sr)
Authors

Publications

Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles

Radulović, Dragan; Terzić, Anja; Stojanović, Jovica; Jovanović, Vladimir; Todorović, Dejan; Ivošević, Branislav

(MDPI, 2024)

TY  - JOUR
AU  - Radulović, Dragan
AU  - Terzić, Anja
AU  - Stojanović, Jovica
AU  - Jovanović, Vladimir
AU  - Todorović, Dejan
AU  - Ivošević, Branislav
PY  - 2024
UR  - http://rims.institutims.rs/handle/123456789/816
AB  - Smelting used to be less efficient; therefore, wastes obtained from historical processing at smelter plants usually contain certain quantities of valuable metals. Upon the extraction of useful metal elements, metallurgical slag can be repurposed as an alternative mineral raw material in the building sector. A case study was conducted, which included an investigation of the physico-chemical, mineralogical, and microstructural properties of Pb–Zn slag found at the historic landfill near the Topilnica Veles smelter in North Macedonia. The slag was sampled using drill holes. The mineralogical and microstructural analysis revealed that Pb–Zn slag is a very complex and inhomogeneous alternative raw material with utilizable levels of metals, specifically Pb (2.3 wt.%), Zn (7.1 wt.%), and Ag (27.5 ppm). Crystalline mineral phases of wurtzite, sphalerite, galena, cerussite, akermanite, wüstite, monticellite, franklinite, and zincite were identified in the analyzed samples. The slag’s matrix consisted of alumino-silicates, amorphous silicates, and mixtures of spinel and silicates. Due to the economic potential of Pb, Zn, and Ag extraction, the first stage of reutilization will be to transform metal concentrates into their collective concentrate, from which the maximum amount of these crucial components can be extracted. This procedure will include combination of gravity concentration and separation techniques. The next step is to assess the Pb–Zn slag’s potential applications in civil engineering, based on its mineralogical and physico-mechanical properties. Alumino-silicates present in Pb–Zn slag, which contain high concentrations of SiO2, Al2O3, CaO, and Fe2O3, are suitable for use in cementitious building composites. The goal of this research is to suggest a solution by which to close the circle of slag’s reutilization in terms of zero waste principles. It is therefore critical to thoroughly investigate the material, the established methods and preparation processes, and the ways of concentrating useful components into commercial products.
PB  - MDPI
T2  - Sustainability
T1  - Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles
IS  - 2
VL  - 16
DO  - 10.3390/su16020720
ER  - 
@article{
author = "Radulović, Dragan and Terzić, Anja and Stojanović, Jovica and Jovanović, Vladimir and Todorović, Dejan and Ivošević, Branislav",
year = "2024",
abstract = "Smelting used to be less efficient; therefore, wastes obtained from historical processing at smelter plants usually contain certain quantities of valuable metals. Upon the extraction of useful metal elements, metallurgical slag can be repurposed as an alternative mineral raw material in the building sector. A case study was conducted, which included an investigation of the physico-chemical, mineralogical, and microstructural properties of Pb–Zn slag found at the historic landfill near the Topilnica Veles smelter in North Macedonia. The slag was sampled using drill holes. The mineralogical and microstructural analysis revealed that Pb–Zn slag is a very complex and inhomogeneous alternative raw material with utilizable levels of metals, specifically Pb (2.3 wt.%), Zn (7.1 wt.%), and Ag (27.5 ppm). Crystalline mineral phases of wurtzite, sphalerite, galena, cerussite, akermanite, wüstite, monticellite, franklinite, and zincite were identified in the analyzed samples. The slag’s matrix consisted of alumino-silicates, amorphous silicates, and mixtures of spinel and silicates. Due to the economic potential of Pb, Zn, and Ag extraction, the first stage of reutilization will be to transform metal concentrates into their collective concentrate, from which the maximum amount of these crucial components can be extracted. This procedure will include combination of gravity concentration and separation techniques. The next step is to assess the Pb–Zn slag’s potential applications in civil engineering, based on its mineralogical and physico-mechanical properties. Alumino-silicates present in Pb–Zn slag, which contain high concentrations of SiO2, Al2O3, CaO, and Fe2O3, are suitable for use in cementitious building composites. The goal of this research is to suggest a solution by which to close the circle of slag’s reutilization in terms of zero waste principles. It is therefore critical to thoroughly investigate the material, the established methods and preparation processes, and the ways of concentrating useful components into commercial products.",
publisher = "MDPI",
journal = "Sustainability",
title = "Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles",
number = "2",
volume = "16",
doi = "10.3390/su16020720"
}
Radulović, D., Terzić, A., Stojanović, J., Jovanović, V., Todorović, D.,& Ivošević, B.. (2024). Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles. in Sustainability
MDPI., 16(2).
https://doi.org/10.3390/su16020720
Radulović D, Terzić A, Stojanović J, Jovanović V, Todorović D, Ivošević B. Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles. in Sustainability. 2024;16(2).
doi:10.3390/su16020720 .
Radulović, Dragan, Terzić, Anja, Stojanović, Jovica, Jovanović, Vladimir, Todorović, Dejan, Ivošević, Branislav, "Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles" in Sustainability, 16, no. 2 (2024),
https://doi.org/10.3390/su16020720 . .