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Evaluation of Stress Intensity Factors 
(SIFs) Using Extended Finite Element 
Method (XFEM) 

Bojana Aleksic, Aleksandar Grbovic, Abubakr Hemer, 
Ljubica Milovic and Vujadin Aleksic 

Introduction 

Finite element analysis is a numerical method that makes it possible to solve very 
complex problems. This method uses physical discretization of domains, so that 
complex spatial structures in the calculations are considered as discrete systems. 
The development of engineering structures presupposes the existence of very 
precise calculations, which provide optimum weight, load capacity and structural 
safety. The idea of division of domains into a number of subdomains is very old, 
but the intensive development of the method of finite elements is only foreboded in 
the middle of the twentieth century. 

The finite element is defined by its shape, number and position of the adjacent 
nodes. Calculation by the finite element method begins with discretization con­
sisting of the selection of interpolation functions (element shape functions) as well 
as the selection of refinement of the finite element mesh. Interpolation functions 
(shape functions) approximately determine the true field of variables at any point 
within an element, interpolating the values of the variables in the nodes of that 
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element. By solving formed <illferential equations for the finite element mesh, the 
required magoitudes are calculated {displacement. strain, internal forces, stress} [1]. 

The finite element method is very often used to calculate the structures with the 
cracks-~crack.ed stmctures. 

In addition to the classical finite elements, there is an extended Finite mement 
Method {XFEM) that will be discussed in this paper. The bask: chanlcteristic of 
XFHM is that it allows the modeling of a discontinuous physical field indepen­
dently of the generated network of finite elements. Unlike the classic finite element 
method, where the cracks growth process requires the successive generation of a 
network to be able to monitor the increasing geometric discontinuity, the XFEM 
does not require a comfortable mapping between the network and the discontinuity 
geometry. 

In this paper, a simulation of the central-crack propagation was conducted using 
the example of a finite-dimension plate, and a comparative overview of the .results 
obtained using Abaqus and the FRANC2D/L software presented. 

3D Simulation of the Central-Crack Propagation 
on the Fblite-DJmenslon Plate 

It is a plate of constant thickness {t = 25.4 mm) and sligbdy larger dimensions 
{508 x 254 mm), but with a central initial crack 254 mm long {Fig. 1). The model 
of the central-crack plate is defined in the CATIA vS [2] software, from where it 
was exported to Abaqus. The initial crack in CATIA vS is defined as a surface 
without thickness, while Abaqus defines the characteristics of the material 

Fig. 1 Dimalsims of 1he plalc with ca~tEal crack. used far 3D simubdion of propaga1ion 
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' 

• .L . 
Ji1g. 2 J..oamng of the SOS x 2S4 mm plate wi1h camal. crack (Abaqus model) 

(steel with Young's modulus of elasticity 206,800 MPa and Poisson's coefficient 
0.3), UDifom tensile stress (value 6.89 kPa) on the upper and lower sudace of the 
plate and the coaesponding boundary conditions (Fig. 2). 

In .Abaqus, two meshes of finite elements--mesh with hexahedra (F'1g. 3) and 
mesh with tetrahedra (Fig. 4) are defined to compare the results obtained for dif­
ferent types of elements. In Figs. 3 and 4 it can be seen that in the areas through 
which the crack propagates a very "thick" mesh is generated, in order to increase 
the aa:uracy of the values obtained by calculation using a larger number of nodes. 
The Figs show the outlook of the meshes that gave the best results and that came 
after several itemti.ons through which the meshes were grad.ually improved. The 
final mesh consisting of hexahedral elements had 128,190 elements, while the 
tetrahedral mesh consisted of 917,880 elements. 

Figures 5 and 6 show the values of von Mises stress around the crack on the 
hexahedral mesh after the first step of the calculation (crack opening displacement). 
The maximum value of the stress adjacent to the crack tip was 0.703 MPa, which is 
quite a low value, but it should not be surprising since the applied tensile stress at 
the ends of the plate was only 0.00689 MPa. 

Such a low stress value was adopted to study the variation in the value of the 
stress intensity factor in the case of low external stress, as well as to compare the 
value of the stress intensity after the crack opening displarement with the value 
given in the literature [3], whidl was also obtained by the extended finite element 
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Fig. 3 The ~ement mesh of tbe model of pre-Cl'llded 508 x 254 mm plate (hexahedra1 
dcmeniB) 

F1g. 4 Ymite-element mesh of dle model of pre-eracbd SOS x 254 mm plate (teUabedral 
elements) 

method, but in 2D analysis. Otherwise. the value of the K1 intensity factor in the 
case of the plate with central crack can be determined by the formula: 

~tear.)= (7 -~(;,~). Viii (1) 

where factor of correction/(;.,~) is detennined from the tables of the values that 
also can be found in literature [4]. In this case:=~= 0.5, i =: = 0.5, then 
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~· 

Fig. 5 Slless state (vcm Mises) of the plate afCa' crack ope:oiDg disp1acaDeJrt ~ 
elements) 

Fig. 6 Stress state (von Mises) of the plate after c:rack opening displaument (hexahedral elements 
-magnified presentlllion) 

f(O.S, 0.5) l::j 1.9, so that theoretical value of Kr is: IQ._.->= 261.08 
KPa mm.o.s = 0.26108 MPa mm.o.s 

The values of K1 obtained from the 2D analysis ranged from 239.08 KPa mm0•5 

to as much as 405.99 KPa mm0·", and were obtained for different size of the 
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integration domain {relative to the length of the crack} and using different methods 
{classical FBM and XFBM were used} [5]. The XFBM gave far better predictions, 
since the average deviations from the theoretical value (for different sizes of the 
integration domain) amounted to only 1%. The average value of~. obtained after 
the crack opening displacement on the 3D model with hexahedral elements (Figs. 5 
and 6), was 288.3 KPa mm05

, which is about 10% above the theoMical value and 
the values from [3]. However, this is the mean value obtained based on 64 stress 
intensity factors ca1.culated at the same number of points on the front of the 3D 
crack, while the theoretical value and the value from the 2D analysis using FEM 
were calcu1ated at only one point of the crack tip. As for the plate with tetrahedral 
elements, a slightly lower value of K1 (281.1 KPa mm05

) was obtained. 
Figures 7 and 8 show the values of von Mises stress around the crack on the 

tetrahedral mesh after the first step. The maximum stress (1.032 MPa) is slightly 
higher than that of the plate with hexahedral elements. 

In the available literature, however, the values of the stress intensity factor 
obtained by applying the XFEM to further crack propagation after the "opening" of 
the initial damage 254 mm-long cannot be found. In the NASGRO base of standard 
samples, there is an example of a plate with a crack in the middle, but the values of 
the stress intensity factor obtained in the NASGRO v4 software cannot be used to 
verify the solutions obtained using XFEM in Abaqus, because the NASGRO uses a 
plate of infinite length for a calculation. 

Plate dimensions significantly affect the accuracy of the results obtained using the 
FEM so that, in order to verify the results, the values obtained for the 20 pla!e model 
calculated in the FRANC2DIL software had to be used here. In Figs. 9 and 10, the 

• 

~· 

Fig. 7 Sties& state (von Miles) of the plate after aack opcDing displacement (telrahedml 
dcmmlbl) 
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Fig. 8 Slless state (von Mise&) of the plate afta' cmck 'V"ing displacemm1 (telrahcdral elmm=ts 
-magnified presentalion) 

. 
t:· 

Fig. 9 Stress state (van Misea) of a plam after 18 steps of c:raclt propagation (hexahedra1 
elements) 

stress state of the pJates with hexahedral and te1rahedral elements after 18 crack 
propagation steps is shown, while Fig. 11 shows the appearance of the mesh of the 
centtal-crack plate generated in the FRANC2DIL software. 

The model in FRANC2DIL was loaded with the same tensile stress at the ends of 
the plate as well as the model in Abaqus, and the same boundary conditions and 
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~· 
' 

J.i1&. 10 Stress stale (von Mises) of a pla1e after 18 steps of crack propagation (teUabedral. 
elements) 

Fig. 11 'l'he appeal'IIIWC of the mesh of elements of the mlt1111-aack SOS x 2S4 mm plate in the 
FRANC2DIL software 

material characteristics were applied (plate thickness is one of them), too. The final 
appearance of the deformed mesh of elements in Fig. 12 confinned that all the 
crack-propagation parameters were well defined, since the mesh is very similar to 
the defoDD.ed 3D meshes shown in Figs. 9 and 10. The crack shape shown in 
Fig. 12 was obtained after a 20 propagation step (crack opeaing displacement +19 
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Ji1&, l2 The appearance of the deformed mesh of elements in 1he FRANC2DIL software after 20 
steps of Cl'IU:k propagation. 

propagations), so that the appearance of the plate is slightly different than in Figs. 9 
and 10, because in the 3D simulations 18 steps of propagation of a maximum value 
of 2.5 mm were canied out in both crack tips. The final crack length, therefore, was 
339 mm for the 3D model. and 349 mm for the 2D. In both simulation& (2D and 
3D), the option for free crack propagation was used, that is, they were not ''forced" 
to move in the plane. However, in all three cases, cracks propagated exclusively in 
the horizontal plane. 

Table 1 gives the values of the stress intensiey factor obtained by simulation of 
crack propagation on the plate with hexahedral elements, while the values given in 
Table 2 were obtained on the plate with tetrahedral elements. 

What can be observed is that the ditl'erenees between the minimum and 
maximum values and the equivalent stress safety factor of Mode I are now sig· 
nifleantly lower than in the ftn;t case, which confums the conclusion that the 
shape and density of the mesh have a significant effect on the accuracy of the results 
obtained using the extended finite element method. 

In the model of the cen1nil-crack plate, it is easier to make a qualiey mesh of 
elements since it has no hole that is the source of the stress concentration and 
around which the mesh must be carcfu11y generated to prevent the occurrence of 
unrealistically high or low sttess values. 

The values in Table 1 show that on the mesh with hexahedrons the number of 
the front points in which the values of Km- and K1 were calculated was constant 
almost all the time and was 64 (in a few steps it was somewhat larger, 66 and 68), 
and that calcolated mean values of the equivalent stress lnteaslty factor and 
stress Intensity factor of Mode I In all steps were almost ldentkal. This shows 
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Table 1 The value of the equivalent stress intensity factor and stress intensity factor Mode I in the 
case of the model with hexahedral elements 

Hexahedral elements 

The value of the Stress intensity factor 
equivalent stress intensity 
factor, Ke.cv (MPamm0

·
5

) 

Mode I, K1 (MPamm0
·
5

) 

Step Length of the Number of Max Min Mean Max M in Mean 
crack (mm) front points values values 

1 254 64 0.2926 0.2823 0.2884 0.2923 0.2822 0.2883 

2 259 64 0.3015 0.2944 0.2981 0.3012 0.2942 0.2978 

3 264 64 0.3076 0.3056 0.3069 0.3073 0.3055 0.3067 

4 269 64 0.3177 0.3143 0.3159 0.3174 0.3142 0.3156 

5 274 64 0.3265 0.3238 0.3252 0.3264 0.3236 0.3249 

6 279 64 0.3364 0.3332 0.3346 0.3361 0.3332 0.3343 

7 284 64 0.3471 0.3427 0.3448 0.3469 0.3427 0.3445 

8 289 64 0.3562 0.3534 0.3657 0.3559 0.3533 0.3542 

9 294 64 0.3684 0.3632 0.3755 0.3681 0.3631 0.3654 

10 299 64 0.3769 0.3739 0.3879 0.3766 0.3735 0.3753 

11 304 64 0.3915 0.3848 0.3879 0.3913 0.3847 0.3876 

12 309 64 0.4000 0.3956 0.3982 0.3997 0.3952 0.3978 

13 314 64 0.4151 0.4082 0.4114 0.4148 0.4080 0.4111 

14 319 66 0.4241 0.4196 0.4224 0.4238 0.4194 0.4221 

15 324 64 0.4390 0.4332 0.4363 0.4386 0.4330 0.4360 

16 329 66 0.4499 0.4472 0.4482 0.4496 0.4469 0.4479 

17 334 66 0.4661 0.4596 0.4629 0.4656 0.4594 0.4625 

18 339 68 0.5121 0.5048 0.5087 0.5118 0.5046 0.5084 

that the values of the stress intensity factors of the Modes IT and Ill were either 
negligibly small or negative, that is, that these modes do not occur at all during the 
crack propagation. And indeed, by inspecting the files in which Abaqus kept all 
calculated values during the propagation step, enough arguments were found to 
confirm the previous conclusion. 

Through the analysis of the values presented in Table 2 (case of the plate with 
tetrahedral elements) one can come to the same conclusion as in the case of the 
plate with hexahedral elements: the ditference between the mean values of the 
equivalent stress intensity factor and the intensity factors of Mode I is almost 
negligible in all steps, indicating the absence of Modes IT and Ill during crack 
propagation. Unlike the hexahedral plate, the number of the front points on the 
tetrahedral plate steadily increased from step to step, from 254 points (as it was at 
the beginning) to 339 points (as it was in the last propagation). It is assumed that 
this is a consequence of the very shape of the tetrahedral element through which the 
crack propagates, and here we can mention another fact that additionally clarifies 
the great difference in the number of front points: the number of finite elements on 
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Table 2 The value of the equivalent stress intensity factor and stress intensity factor of Mode I in 
the case of the model with tetrahedral elements 

Tetrahedral elements 

The value of the Stress intensity factor 
equivalent stress intensity 
factor, Ke.cv (MPa mm0

·
5

) 

Mode I, K1 (MPa mm0
·
5

) 

Step Length of the Number of Max Min Mean Max M in Mean 
crack (mm) front points values values 

1 254 190 0.2871 0.2711 0.2814 0.2870 0.2707 0.2811 

2 259 208 0.2927 0.2844 0.2893 0.2925 0.2838 0.2890 

3 264 222 0.3006 0.2946 0.2982 0.3008 0.2938 0.2980 

4 269 226 0.3074 0.3045 0.3059 0.3087 0.3039 0.3056 

5 274 217 0.3194 0.3110 0.3158 0.3193 0.3100 0.3155 

6 279 212 0.3259 0.3215 0.3242 0.3259 0.3210 0.3240 

7 284 227 0.3348 0.3291 0.3330 0.3342 0.3255 0.3324 

8 289 208 0.3460 0.3382 0.3434 0.3456 0.3276 0.3420 

9 294 216 0.3543 0.3500 0.3529 0.3544 0.3364 0.3515 

10 299 212 0.3688 0.3596 0.3631 0.3640 0.3525 0.3602 

11 304 212 0.3794 0.2701 0.3743 0.3753 0.3649 0.3721 

12 309 199 0.3938 0.3814 0.3845 0.3871 0.3810 0.3831 

13 314 203 0.4026 0.3934 0.3970 0.3982 0.3906 0.3955 

14 319 184 0.4120 0.3960 0.4082 0.4126 0.3908 0.4069 

15 324 155 0.4223 0.4136 0.4186 0.4216 0.4066 0.4167 

16 329 152 0.4354 0.4246 0.4308 0.4351 0.4232 0.4301 

17 334 126 0.4566 0.4453 0.4496 0.4547 0.4405 0.4476 

18 339 107 0.5122 0.4951 0.5026 0.5110 0.4953 0.5025 

the plate with tetrahedrons is significantly higher than the number of elements on 
the hexahedral plate---917,880 versus 128,190, which is a ratio of 7:1. 

The graph in Fig. 13 shows that the differences in the values of the equivalent 
stress intensity factors obtained on the plates with these two types of elements are 
almost negligible, although it is evident that the values obtained on the tetrahedral 
plate are in all steps lower than those on the hexahedral plate. Taking into con­
sideration the results obtained in the FRANC2D/L software as well, it is possible to 
draw a new diagram (Fig. 14) which shows that the values of the stress intensity 
factor obtained by the 2D analysis are slightly lower than the values obtained using 
the hexahedral and tetrahedral elements. 

The value of the stress intensity factor of Mode I after the crack opening dis­
placement obtained in the FRANC2D/L software was 0.2715 MPamm0

·
5

, which is 
close to the theoretical value of 0.26108 MPamm0

·
5 obtained by formula (1). 

During crack propagation in the FRANC2D/L software, the value of K1 was con­
tinuously increasing and-unlike the plates with hexahedral and tetrahedral ele­
ments-in the 18th step there was no sudden jump of the value (Fig. 14). The jump 
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of the value of K1 on the 3D plates is a consequence of the fact dml: the crack on 
them has emerged from the area of high density of the mesh, which is another 
contribution to the lhesis that the quality of the mesh is erudal when the &.em• 

racy of the results or simulation is concerned. 
Finally, Table 3 gives a comparative overview of the values ofK1 obtained in the 

FRANC2DIL and Abaqus software on the plate with tettahedrons, which gave more 
accurate results than the hexahedron (which is the result of the much larger number 
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Table 3 Comparative overview of the values of stress intensity factor of Mode I for 3D plate with 
tetrahedral elements (Abaqus) and 2D plate (FRANC2DIL) 

Length of the crack FRANC2D/ Abaqus 3D, tetrahedral Difference 
(mm) L elements (%) 

K1 (MPa mm0
·
5

) 

254 0.2715 0.2811 3.54 

259 0.2795 0.2890 3.41 

264 0.2865 0.2980 4.01 

269 0.2902 0.3056 5.29 

274 0.3050 0.3155 3.45 

279 0.3140 0.3240 3.19 

284 0.3238 0.3324 2.65 

289 0.3337 0.3420 2.50 

294 0.3435 0.3515 2.32 

299 0.3549 0.3602 1.50 

304 0.3644 0.3721 2.10 

309 0.3771 0.3831 1.60 

314 0.3873 0.3955 2.12 

319 0.4006 0.4069 1.58 

324 0.4113 0.4167 1.32 

329 0.4257 0.4301 1.04 

334 0.4376 0.4476 2.30 

339 0.4523 0.5025 11.10 

of finite elements generated on the tetrahedral plate, too). As one can see in Table 3, 
the differences in the K1 values in steps are not large (from 1.04 to 5.29% ), with the 
exception of the last step (11.1 0%) already explained (cracks emerging from the 
area of higher density of the elements). The values obtained definitely indicate that 
3D simulation-if the generated mesh is a quality mesh~an also provide suffi­
ciently good values of the stress intensity factors, which can then be used in 
determining the number of cycles that will lead to the crack propagation from the 
initial length to its final size. 

The estimation of the number of cycles can also be obtained within Abaqus 
which, based on calculated values of Kekv per steps and introduced values of Paris 
coefficient (n), Paris exponent (C) and stress ratio (R), calculates the number of 
cycles using a modified Paris law on crack propagation, given by the equation. 

da C(AKY 
dN (I- R)(Kc- Kmax)" 

(2) 

In the case of a central crack on the plate 508 x 254 mm, the value of the 
exponent n = 2.26 and coefficient C = 7.526 x 10-11

, respectively, corresponding 
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to the steel of HP-9-4-20 190-210 UTS grade were adopted; GTA Weld + SR from 
NASGRO base. For the ratio of minimum and maximum stress, the value R = -1 
was adopted. 

The graph in Fig. 15 shows that an extremely large number of cycles (order of 
magnitude 1 x 1011

) is required to make the crack propagate from the initial length 
of 254 to 259 mm. while for reaching the total length of 339 mm it is necessary to 
have more 1han 1.2 • 1012 cycles. This result is not unexpected, because a very 
low value of tensile sb'ess (only 0.00689 MPa) was used in the calculation. 

It is interesting to note that the NASGRO software for an identical model of 
plate, only of infinile length, showed the message "crack does not propagale" when 
attempting to make the crack to propagate, and as a result gave the number of cycles 
equal to zero. This also confirms that the applied load is very low and that under 
such a load the crack will propagate by a couple of millimeters only after a very 
large number of cycles. 

However, the actual value of the cycle number can only be obtained by fatigue 
testing. 
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Conclusions 

Over the years, many numerical techniques such as finite element method (FEM), 
boundary element method (BEM), meshfree methods and extended finite element 
method (XFEM) have been developed to simulate the fracture mechanics problems. 
In XFEM, the conformal meshing is not required, hence, the modelling of moving 
discontinuities or crack growth is performed with an ease. 

Numerical calculation using XFEM, such as that presented in this paper, makes 
it possible to study complex real problems, including a comprehensive parametric 
analysis of all influential factors. Detailed three-dimensional elastic-plastic models, 
which consider the corresponding properties of microstructural heterogeneity of 
ductile materials, as well as various structural solutions of the seam geometry and 
various forms of cracks, provide the possibility of-for instance-effective testing 
of heterogeneity of the welded joint, the strain and stress state in critical areas, 
singularity effects and the determination of the parameters of elasto-plastic 
mechanics. 

The main advantage of XFEM lies in possibility of SIPs values evaluation on 
complex cracked geometry but-at the same time-XFEM results are mesh sen­
sitive and depend on the mesh density in the fracture process region. Mesh size 
must be determined carefully to ensure the computational efficiency and accuracy; 
therefore, experimental verification of FE model is still necessary, particularly when 
geometry is result of completely innovative design. 
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