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Abstract. In order to ensure pipeline safety during their service life, all relevant
construction, testing and safety requirements must be met. Corrosion damage is a
major hazard to the steel pipeline as a whole, and it is necessary to comply with
inspections and adequate maintenance so that destruction with catastrophic conse-
quences would be avoided. In this paper, the standard calculation for determining
the maximum acceptable corrosion damage length according to the RSTRENG
method is presented using the calculation of the corrosion-damaged structure of
the ammonia (NH3) transfer pipeline. After that, the methodological approach
to calculation using the finite element method (FEM) is presented in accordance
with the methods defined by the new and general approach to standardization and
technical harmonization for pressure equipment (Pressure Equipment Directive).
The aim of the work was to present advanced modeling techniques of corroded
surfaces based on FEM in order to develop a procedure for evaluating the residual
strength of steel pipelines in the chemical industry.

Keywords: Pipeline - Corrosion damage - Corrosion assessment - FEM

1 Introduction

Corrosion damage, in which the load-bearing capacity of the section is reduced, greatly
endangers the steel pipelines as a whole. Failure to perform required periodic and emer-
gency inspections, as well as inadequate maintenance, can result in destruction with
catastrophic consequences.

Improper maintenance of steel pipelines from the aspect of corrosion protection
entails very expensive repairs, therefore it is necessary to thoroughly study the issues
of protection, durability and maintenance of steel pipelines, as well as the possibility of
monitoring corrosion aggression in operation. In this regard, it is necessary to assess the
condition or the remaining strength of the steel pipeline subject to corrosion after long-
term use, after which certain tests should be carried out using non-destructive methods to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Mitrovic et al. (Eds.): CNNTech 2023, LNNS 792, pp. 132-147, 2023.
https://doi.org/10.1007/978-3-031-46432-4_11
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determine the actual degree of damage to the vital parts of the structure. Inspection and
testing of the corroded zones of the supporting elements of the steel support structure of
the pipelines by non-destructive methods must be accompanied by standard inspection
calculations, as well as FME calculations, in order to evaluate the remaining strength
of the steel pipelines; the inspection and testing must also include opinions and recom-
mendations. In uncertain situations, the calculations must be confirmed by experimental
analysis.

Prior to inspection and testing by non-destructive methods, the steel support structure
of the pipelines must be cleaned (e.g., by sandblasting), and the necessary interventions in
the form of modifications to critical elements must be immediately followed by corrosion
protection.

Pipelines must be designed to be safe throughout their service life, taking into account
all relevant influences, with special requirements for design, construction, testing and
safety.

Allowable stresses must be limited by possible errors in operating conditions to
fully eliminate uncertainties resulting from manufacturing, the calculation model, actual
operating conditions, and the properties and behavior of the material.

Due to the risk of corrosion to which the steel support structure are exposed, a number
of corrosion protection measures are prescribed during the construction phase:

e Use of clean and non-corroded sheet metal, profiles and binding material with
corrosion protection.

e Protection of parts that need to be protected prior to installation against the effects of
corrosive agents that may occur on site.

e During the construction phase, sensors and measuring tapes must be installed in order
to monitor changes in the aggressiveness of the environment, stress and strain of the
responsible supporting parts of the steel pipelines which are connected to a computer
that processes the data and makes appropriate decisions.

After installation and prior to commissioning, steel pipelines are subject to inspection
in order to obtain a work permit.

Despite numerous methods of protection, corrosion of steel pipelines is inevitable due
to the harsh environmental conditions in the industry. It occurs in various forms, such as
general corrosion with uniform loss of wall thickness or pitting corrosion associated with
localized reduction of wall thickness. In practice, it happens that the steel embedded in
the pipeline partially or completely corrodes, thus reducing the cross-section and thus the
load-bearing capacity of the structure. In more severe cases, accidents with catastrophic
consequences for production, facilities, production means, equipment and human lives
can occur. Such accidents lead to pollution and harmful effects on flora and fauna, air,
watercourses and groundwater.

Examples of corrosion of steel pipelines structures in the chemical industry are shown
in Fig. 1.

Corrosion manifests itself as follows: appearance of cracks, loss of strength, swelling
and loss of mass, corrosion spots and weakening of the cross-section. Visual signs of
destruction are: erosion, flaking and crumbling, bruising, softening, cracking, crystalliza-
tion, appearance of so-called “popcorn cracking”. Point corrosion is especially dangerous
on parts of the structure exposed to stresses. Due to the reduction in cross-section and high
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Fig. 1. Examples of corrosion damage to steel support structures of pipelines [1, 2]

stress, occasional damage can lead to the formation of cracks and stress concentrations.
[3, 4].

During operation, legally required inspections are performed to ensure safe and
reliable operation of the steel pipelines. In addition to proper and timely maintenance, it
is also necessary to monitor corrosion processes during operation. These processes can
be monitored directly or indirectly. Direct monitoring involves checking the condition of
the steel surface and the aggressiveness of the environment surrounding the pipeline steel
support structure. In indirect monitoring, the corrosion effect is measured on samples
made of the same material as the steel support structure of the pipeline.

Monitoring is very present in the world, especially monitoring the behavior of dynam-
ically loaded structures, such as steel pipelines that operate in aggressive environments,
especially those offered by the chemical industry. The value of the installed monitoring
equipment is negligible compared to the value of the construction of steel pipelines or
the value of rehabilitation works carried out after years of inadequate maintenance.

The direct and indirect costs caused by corrosion in the chemical industry are enor-
mous. In the U.S., the total annual cost of corrosion is estimated at $1.7 billion, or about
8 percent of total capital costs [5]. The indirect costs of production stoppage due to fail-
ure or catastrophic destruction have not been calculated, but are estimated to be much
higher.

The durability of steel for pipelines in the chemical industry depends on the properties
of the corrosive environment and the ability to withstand internal and external influences,
the character and intensity of which depend on the operating conditions of the steel
pipelines. The internal influence is reflected by the purpose and type of fluid in the
steel pipelines, which may be of different aggressiveness, toxicity and explosiveness,
different pressures, temperatures and flows. The external influence depends on the type,
composition and temperature of the exhaust gases and air surrounding the objects in
question, the velocity, flow and pressure of the gases, as well as the powdery substances
in the gas flow.

External influences also include: the chemical effect of water - the environment and
the substances dissolved in it, the changing effect of temperature changes (which leads to
expansion changes of the steel), the changing humidification and drying of the steel, and
the effect of dissolved salts in contaminated water. The emission of pollutants, which are
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almost always present in the ambient atmosphere of the chemical industry, has a great
influence. It includes gases Oy, CO, CO3, SO,, NO, NO,, NOy, H3S, water vapor, and
particles of solids such as KCl, K>SO4, (NH4)2SO4, CO(NH3); etc. The composition
of exhaust gases and solids, their velocity, flow and increased concentration also affect
the rate of corrosion and erosion of steel pipelines.

Pipes of appropriate diameter and wall thickness are used for the construction of
steel pipelines, as well as various profiles in some qualities of general and fine-grained
structural steel.

Steel pipelines made of steel elements require precision, great attention and trained
and professional labor in their manufacture. They are made by welding or joining pipe
flanges of suitable quality. They are equipped with suitable devices such as load cell,
level gauges, safety valves, filling, draining and overflow valves, etc.

Depending on the aggressiveness of the transported fluid, steel pipelines are exposed
to internal corrosion, depending on the environmental conditions and the effect of
external corrosion.

The side of steel pipelines facing the sources of pollutant emissions, which is sup-
ported by airflow from that direction, is more exposed to corrosion due to the direct
impact of pollutants on the structure of the steel pipeline. With poor air circulation,
steel pipelines can be exposed to constant moisture, which, along with the emission of
pollutants, can have disastrous consequences for the structure.

All defects, whether installed or created during the explosion, are investigated over a
period of time, providing realistic insight into the potential damage progression, which in
turn has a direct impact on reducing the number of failures, scheduling plant shutdowns,
and significantly reduces overall costs.

To prevent defects and ensure safe operation, corrosion should be detected, measured
and the remaining strength of the corroded surface of the element needs to be evaluated.

Inspections and tests should be documented with sketches and photographs to ensure
the reproducibility of tests and updating the file, i.e. the “passport” of the steel pipeline.

In order to evaluate the residual strength of corroded elements of steel pipelines
using any of the existing methods, the corrosion defect must be accurately measured.
Currently, the ultrasonic method with associated equipment is the most commonly used
method for testing corrosion damage to steel pipelines. The test and inspection results are
processed manually or automatically with the help of computer programs. The programs
can work in such a way that we provide them with data collected by the classic method
of measuring the maximum corrosion depth (the minimum thickness of the pipe wall),
or the program is integrated with a measuring instrument which scans the tested surface
and compares the obtained results with the standard prescribed acceptance criteria. As
a result, we obtain, by classical calculation or automatically, the remaining strength of
the tested steel pipeline and on this basis determine the maximum allowable operating
pressure.

2 Methods for Assessing Corrosion Damage to Steel Pipelines

There are several methods for evaluating the residual strength of corroded pipelines.
Some of them are very simple and rely only on the length and depth of the fault, while
others are much more complicated based on finite element modeling (FEM).
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ASME B31G [3] is one of the most widely accepted solutions for evaluating corrosion
damage in steel pipelines. The improvement of the method [6, 7] was achieved by
introducing the damage factor, material loading and detailed consideration of the damage
shape by calculations. This method is included in the program known as RSTRENG
(Remaining Strength of Corroded Pipe). ASME B31G and RSTRENG have found wide
application in the assessment of corrosion damage to steel pipelines in industry.

The presented methods allow the evaluation of longitudinal corrosion defects. The
role of transversely oriented defects is usually denied. Kastner’s standard for the drop-in
plasticity at the defect location can be used for transversely oriented defects [8].

However, these criteria are too conservative when applied to damage in steel pipelines
made of high-strength materials. Based on the experimental observations, a specific
finite element framework called PCORRC has been developed, and solutions have been
proposed for the evaluation of pipes made of medium- to high-strength steels, based on
a large series of experiments and FEM calculations [9-25].

Corrosion defects are asymmetric defects that extend in any direction on the inner
or outer surface of the pipeline. Therefore, in order to assess the remaining strength of
the FEM and thus the service life, they should be modeled as realistically as possible.

The aim of this work is to present advanced modeling techniques of corroded surfaces
based on FEM in order to develop a method for evaluating the residual strength of steel
pipelines operating under the environmental conditions of the chemical industry.

2.1 Data for the Calculation of Corrosion Damage to the Steel Pipelines

The data required for the calculation of corrosion damage to pipelines, Fig. 2, using the
RSTRENG method and FEM are:

The nominal value of the outer diameter of the pipeline,D = 125 mm;
Nominal wall thickness of the pipeline,t = 5 mm;
Maximum depth of corrosion damage,d = 2 mm;
Measured (longitudinal) length of the corrosion damage,L,, = 70 mm;

The pipeline is made of steel with the following mechanical properties, determined
by experimental tests:

Modulus of elasticity, E = 211500 MPa;

Poisson’s ratio, v = 0.3;

Yield stress, Seg = 813.4 MPa;

Tensile strength, Sy = 854.8 MPa;

The pipe is subjected to pressure during operation, P = 60 MPa.

Figure 3 shows the recommendations of the ASME B31G-Manual for Determining
the Remaining Strength of Corroded Pipelines standard for evaluating corrosion damage.

2.2 Determination of the Maximum Acceptable Length of Corrosion Damage
Using the RSTRENG Method

The depth of corrosion damage can be expressed as a percentage of the nominal value of
the pipeline wall thickness. If the depth of corrosion of the part is more than 10% or less
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Fig. 2. Corrosion-damaged pipeline (a), and measured values of the asymmetric corrosion damage
to the pipeline (b)
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Fig. 3. Recommendations of standards for evaluation of corrosion damage, orientation of
corrosion damage (a), and influence of mutual distance of corrosion damage (b) [3]

than 80% of the nominal value of the pipeline wall thickness, the length of corrosion
damage shall not exceed the value determined by Eq. (1).

L=1.12-B-vD -t (1)

whereby:

e L - maximum allowable length of corrosion damage;
e B - value determined according to Eq. (2).

The maximum depth of corrosion damage is: d = 2 mm, 40% = 100-2/5.

2 2
d/t 2/5
B= d/ —1= + —1=0,949998 (2)
1.1-4-0.15 1.1-2-0.15

t
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The maximum length of corrosion damage is:

L=112-B-~D-t=1.12-0.949998 - V125 - 5 = 26.6mm

Figure 4 shows the relationship between corrosion damage and the criteria for accept-
ing corrosion damage to pipelines. The criterion is that they must withstand a pressure
equal to the lower yield strength SeL.. The figure represents a parabolic section of the
corroded part, where the y-axis shows the value of the maximum depth of the corrosion
damage divided by the thickness of the pipeline wall, while the x-axis shows the length
of the corrosion damage divided by the square root of the product of the pipe radius and
the pipeline wall thickness.

d/t = 0.400; _L _ 260 = 1.505 3)
= . P} R_Z_ %.5— .

The coordinates of the point from Eq. (3) are exactly on the line of the diagram,
Fig. 4. Considering that the actual measured length of the corrosion damage is L =
70 mm, the operating pressure should be reduced or the pipe with the corrosion damage
should be replaced or repaired.

10
0,8

0,6

d/t

0,4 1,505, 0,400

=0 100%SeH
0,2

0,0

I.I(Rt)”z

Fig. 4. Corrosion damage assessment diagram

If the maximum measured depth of corrosion damage is more than 10% of the
nominal value of the pipe wall thickness and less than 80% of the nominal value of the
pipeline wall thickness, and the measured length of corrosion damage is greater than the
value determined according to Eq. 1, a calculation is required:

1_2.(4)
3 t
Pr=11-P

1 —

4)
%<t~«/j2_+l)
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whereby:

e P’ - maximum allowable pressure for L, and cannot be greater than P;
e P - determined pressure value in the pipe or:

T 1
P=2-SeH -t-F-—-=2-8134-5-1- — = 65.1MPa 5)
D 125

whereby:

e F - corresponding factor from ASME B31.4 [26], ASME B31.8 [27];
e T - corresponding temperature value based on B31 regulation (if not specified, T =

1).

Ly 70
A=0893 — ) =0.893| —— ) =2.50 6
(VDt> (\/125-5) ©

For a damage depth of 40% of the nominal thickness of the pipeline wall, the maximum
allowable corrosion damage length of L. = 26.6 mm was calculated. This corrosion
damage length is smaller than the actual measured corrosion damage length of L =
70 mm, so it is necessary to calculate the maximum allowable pressure (P’) of the
corroded pipeline for this damage case, and it is:

Pr=11-P 1:%'<j> :1.1-65.1|7 1=5(6) -‘=3.9MPa(7)
- §<M/A2_+l> |_1 B %(2 2;02+1)J

3 Evaluation of the Residual Strength of FEM Steel Pipelines

In order to evaluate the residual strength of steel pipelines FEM [2, 7], the processed
test results can be implemented as a model in one of the commercial programs for
FEM calculation, taking into account the PCORRC rules. Due to the asymmetry of
the corrosion damage, a part of the corrosion damaged pipeline is modeled with an
approximate shape to the actual shape. The model is created by connecting isoperimetric
elements, where the number of elements depends on the size of the corrosion damage.
It is necessary to represent the bottom of the damaged area with a sufficient number of
elements determined by the analysis of the previous section. The inside of the model is
exposed to the operating pressure, i.e. the test pressure. Symmetry planes are locations
where boundary conditions are specified, i.e. motions in certain planes are constrained.

All numerical simulations in this work were performed using the Solid Works soft-
ware package, which is based on FEM. The accuracy of the results depends on the precise
modeling of the shape of the pipeline and the corrosion damage, as well as on the choice
of the type and density of the final elements, so our task was to model the corrosion
damage in Fig. 2 as realistically as possible. First, we created a model of a pipeline with-
out corrosion damage, Fig. 5(a), and then a model of a pipeline with corrosion damage,
Fig. 5(b).
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()

Fig. 5. Appearance of the pipeline model without corrosion damage (a), and the pipeline model
with corrosion damage (b)



Corrosion Damages of Pipelines Assessment by Using ... 141

The material properties were determined based on experiments, after which the data
regarding the material and the boundary conditions were used in the calculation, Fig. 6.
Then, a finite element mesh was generated for both the model without corrosion damage,
Fig. 7(a), and the model with corrosion damage, Fig. 7(b).

Material n
> SOLIDWORKS DIN Materials Properties | Tables & Curves| Appearance | CrossHatch | Custom | Application Data | ¢ | *
> [iS) SOLIDWORKS Materials Material properties
Sustainability Extras Materials in the default library can not be edited. You must first copy the material to
4 Custom Materials a custom library to edit it.
[iS) Plastic = : :
’ Model Type: Linear Elastic Isotropic N~
4 [i5) HsLa
@é}m Units: Sl - N/mmA2 (MPa) v
Category: HSLA
Name: NN-70
Default failure | Max von Mises Stress v
criterion:
Description: Materijal za PPP
Source:
Sustainability: | Undefined Select...
Property Value Units A
Elastic Modulus 211500 N/mm#2
Poisson's Ratio 0.3 N/A
Shear Modulus N/mmA2
Mass Density 7850 kg/mA3
Tensile Strength 854.8 N/mmA2
Compressive Strength N/mmA2
Yield Strength 8134 N/mm#*2
Thermal Expansion Coefficient /K
Thermal Conductivity W/(m-K)
v
here [ = . 2
| Apply Close ave Config... Help

Fig. 6. Pipeline material properties and boundary conditions

In the finite element mesh of pipeline with corrosion damage, Fig. 7(b), the size of the
elements varied depending on their location. Smaller elements were used at locations
where corrosion damage occurred, while larger elements were used at locations far
from the critical locations to keep the number of nodes as small as possible so that the
calculation would be simplified to some extent.

Figures 8, 9, 10 and 11 show the calculation results of pipeline with asymmetric
corrosion damage. The calculation was performed for the operating pressure of the
undamaged pipe 60 MPa, the pressure calculated according to ASME B31.G of 3 MPa
and the pressure 22 MPa, which ensures the operation of the pipeline with v = 1, which
means that the pressure in the pipe must not exceed this value.
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Fig. 7. Representation of the finite element mesh on the pipeline without corrosion damage (a),
and on the pipeline with corrosion damage (b)
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Fig. 8. Distribution and stress values on pipeline with corrosion damage for a pressure 60 MPa
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Fig. 9. Section through a model of corrosion damage to a pipeline that has been subjected to a
pressure 60MPa
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Fig. 10. Distribution and stress values on pipeline with corrosion damage for a pressure 3MPa

[N
~ piefoes
von Mises (N/mm»2 (MPa))
795385
731572
667.759
. 603945
- 540132
476319
412506
348.692
. 284879
221.066
157.253
93439

29.626

—P Yield strength: 812400

Fig. 11. Distribution and stress values on pipeline with corrosion damage for a pressure 22MPa

4 Results and Discussion

The standard calculation for determining the maximum acceptable length of corrosion
damage using the RSTRENG method resulted in an operating pressure of an undamaged
pipeline of 65.1 MPa, while the pressure of a damaged corroded pipeline calculated
according to ASME B31.G is 3.9 MPa.

A finite element method calculation was performed in Solid Works, and Table 1
shows the maximum and minimum stress values on pipeline with corrosion damage for
different operating pressures - for the operating pressure of an undamaged pipeline of
60 MPa and for the pressure of 3 MPa calculated according to ASME B31.G.

As evident in Table 1, the maximum stress value for the working pressure of the
undamaged pipeline 60 MPa is 2144.5 MPa, which is much higher than the yield stress
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Table 1. Stress values on pipeline with corrosion damage

Stress, MPa FEM (von Mises stress)
Omin> MPa Omax, MPa
60 2144.5 187.9
3 110.0 3.8
22 795.3 29.6

813.4 MPa, while for the calculated ASME B31.G pressure 3 MPa, the maximum stress
value is 110.0 MPa, which again is much lower than what the corroded pipeline can
withstand. This is due to the fact that the standard calculation is quite conservative. For
this reason, through calculations with FEM, we have shown that this type of corrosion
damage can withstand a pressure of 22 MPa when the pipeline would work with v =1,
and the maximum stress in this case is 795.3 MPa.

5 Conclusion

Corrosion damages the steel pipelines. It is therefore important to carry out regular and
extraordinary inspections and adequately maintain the steel pipelines to avoid destruction
with catastrophic consequences. The inspection by nondestructive testing of the corroded
zones of the supporting elements of the steel pipelines constructions must be followed
by inspection calculations using standard methods and FEM to assess the remaining
strength of the steel pipeline.

In this paper, advanced modeling techniques for corroded surfaces based on FEM
were presented with the aim of developing a procedure to evaluate the residual strength
of steel pipelines operating in the environmental conditions of the chemical industry.

By analyzing the stress distribution on the corrosion-damaged pipeline for the operat-
ing pressure of the undamaged pipeline 60 M Pa, the pressure 3 M Pa calculated according
to ASME B31G and the pressure 22 M Pa, which ensures the operation of the pipeline with
v = 1. After the FEM calculation, a completely different picture of the stress distribution
can be seen, which is to be expected, and it tells us that for a complete understanding
of the behavior of a corroded pipeline for the purpose of control calculation, the FEM
calculation is mandatory on a model where all significant corrosion damage is modeled
as realistically as possible.
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