Application of neural networks in determination of compressive strength of concrete
Samo za registrovane korisnike
2012
Članak u časopisu (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
This paper presents the optimization of concrete mixtures composition related to a physical property and the process of production of trial mix design by using the multi-layered feed-forward neural networks. This optimization was conducted because there is no clear method of designing concrete mixture composition and for the purpose of shortening procedure of the trial mix design of concrete. Mix design depend on many variables and deterministic models cannot give good results. The goal of the research was to make a model of a neural network, on the set of available data from 288 trial mix, which would, with highest accuracy, predict the compressive strength of concrete at the age of 28 days. In order to attain as high accuracy of obtained results as possible, three levels of input data to the neural networks were considered. On each of the applied groups of input data, the neural networks with 1 and 2 hidden layers were formed. On the basis of the adopted neural network, an algorithm ...for usage of the network in actual situations was made, applied on an actual model.
Ključne reči:
prognostic model / neural networks / concrete strengthIzvor:
Revista Romana de Materiale/ Romanian Journal of Materials, 2012, 42, 1, 16-22Finansiranje / projekti:
Institucija/grupa
Institut za ispitivanje materijalaTY - JOUR AU - Bojović, Dragan AU - Jevtić, Dragica AU - Knežević, Milos PY - 2012 UR - http://rims.institutims.rs/handle/123456789/161 AB - This paper presents the optimization of concrete mixtures composition related to a physical property and the process of production of trial mix design by using the multi-layered feed-forward neural networks. This optimization was conducted because there is no clear method of designing concrete mixture composition and for the purpose of shortening procedure of the trial mix design of concrete. Mix design depend on many variables and deterministic models cannot give good results. The goal of the research was to make a model of a neural network, on the set of available data from 288 trial mix, which would, with highest accuracy, predict the compressive strength of concrete at the age of 28 days. In order to attain as high accuracy of obtained results as possible, three levels of input data to the neural networks were considered. On each of the applied groups of input data, the neural networks with 1 and 2 hidden layers were formed. On the basis of the adopted neural network, an algorithm for usage of the network in actual situations was made, applied on an actual model. T2 - Revista Romana de Materiale/ Romanian Journal of Materials T1 - Application of neural networks in determination of compressive strength of concrete EP - 22 IS - 1 SP - 16 VL - 42 UR - https://hdl.handle.net/21.15107/rcub_rims_161 ER -
@article{ author = "Bojović, Dragan and Jevtić, Dragica and Knežević, Milos", year = "2012", abstract = "This paper presents the optimization of concrete mixtures composition related to a physical property and the process of production of trial mix design by using the multi-layered feed-forward neural networks. This optimization was conducted because there is no clear method of designing concrete mixture composition and for the purpose of shortening procedure of the trial mix design of concrete. Mix design depend on many variables and deterministic models cannot give good results. The goal of the research was to make a model of a neural network, on the set of available data from 288 trial mix, which would, with highest accuracy, predict the compressive strength of concrete at the age of 28 days. In order to attain as high accuracy of obtained results as possible, three levels of input data to the neural networks were considered. On each of the applied groups of input data, the neural networks with 1 and 2 hidden layers were formed. On the basis of the adopted neural network, an algorithm for usage of the network in actual situations was made, applied on an actual model.", journal = "Revista Romana de Materiale/ Romanian Journal of Materials", title = "Application of neural networks in determination of compressive strength of concrete", pages = "22-16", number = "1", volume = "42", url = "https://hdl.handle.net/21.15107/rcub_rims_161" }
Bojović, D., Jevtić, D.,& Knežević, M.. (2012). Application of neural networks in determination of compressive strength of concrete. in Revista Romana de Materiale/ Romanian Journal of Materials, 42(1), 16-22. https://hdl.handle.net/21.15107/rcub_rims_161
Bojović D, Jevtić D, Knežević M. Application of neural networks in determination of compressive strength of concrete. in Revista Romana de Materiale/ Romanian Journal of Materials. 2012;42(1):16-22. https://hdl.handle.net/21.15107/rcub_rims_161 .
Bojović, Dragan, Jevtić, Dragica, Knežević, Milos, "Application of neural networks in determination of compressive strength of concrete" in Revista Romana de Materiale/ Romanian Journal of Materials, 42, no. 1 (2012):16-22, https://hdl.handle.net/21.15107/rcub_rims_161 .