Investigation of high temperature behavior and sintering mechanism of fly ash based concretes
Abstract
Four types of refractory concretes were studied at various temperatures ranging from ambient to adopted maximal 1400 degrees C. The concretes had same matrix composition: K concretes were based on corundum aggregate; B concretes were based on bauxite aggregate and chamotte filler; while K2 and B2 concretes had 30 % of fly ash replacement in bonding agent. Fly ash was mechanically activated by means of planetary ball mill. Samples were dried at 110 degrees C during 24 hours to create standard specimens. Afterwards, the samples were preburned at 1100 degrees C and subsequently subjected to compressive uniaxial creep test conducted at various temperatures (1200, 1300 and 1400 degrees C). Thermal behavior was also investigated by dilatometry analysis starting from room temperature up to 1400 degrees C. The evolution of the refractory concretes behavior from quasi-brittle to viscoplastic was investigated and correlated to their microstructure evolution induced by sintering process. The infl...uence of the burning temperature and procedure duration on the concretes behavior is also discussed. Creep test and dilatometry analysis helped in defining of the sintering mechanism and its parameters, and additionally explained deformation nature of the refractory concretes.
Keywords:
thermal treatment / thermal properties / sintering / environment / compositesSource:
Revista Romana de Materiale/ Romanian Journal of Materials, 2014, 44, 3, 213-224Publisher:
- Procema SA
Funding / projects:
- Directed synthesis, structure and properties of multifunctional materials (RS-172057)
- Development and application of multifunctional materials using domestic raw materials in upgraded processing lines (RS-45008)
- Mechanochemistry treatment of low quality mineral raw materials (RS-34006)
Collections
Institution/Community
Institut za ispitivanje materijalaTY - JOUR AU - Terzić, Anja AU - Andrić, Ljubiša AU - Petrov, Milan AU - Radojević, Zagorka AU - Miličić, Ljiljana PY - 2014 UR - http://rims.institutims.rs/handle/123456789/259 AB - Four types of refractory concretes were studied at various temperatures ranging from ambient to adopted maximal 1400 degrees C. The concretes had same matrix composition: K concretes were based on corundum aggregate; B concretes were based on bauxite aggregate and chamotte filler; while K2 and B2 concretes had 30 % of fly ash replacement in bonding agent. Fly ash was mechanically activated by means of planetary ball mill. Samples were dried at 110 degrees C during 24 hours to create standard specimens. Afterwards, the samples were preburned at 1100 degrees C and subsequently subjected to compressive uniaxial creep test conducted at various temperatures (1200, 1300 and 1400 degrees C). Thermal behavior was also investigated by dilatometry analysis starting from room temperature up to 1400 degrees C. The evolution of the refractory concretes behavior from quasi-brittle to viscoplastic was investigated and correlated to their microstructure evolution induced by sintering process. The influence of the burning temperature and procedure duration on the concretes behavior is also discussed. Creep test and dilatometry analysis helped in defining of the sintering mechanism and its parameters, and additionally explained deformation nature of the refractory concretes. PB - Procema SA T2 - Revista Romana de Materiale/ Romanian Journal of Materials T1 - Investigation of high temperature behavior and sintering mechanism of fly ash based concretes EP - 224 IS - 3 SP - 213 VL - 44 UR - https://hdl.handle.net/21.15107/rcub_rims_259 ER -
@article{ author = "Terzić, Anja and Andrić, Ljubiša and Petrov, Milan and Radojević, Zagorka and Miličić, Ljiljana", year = "2014", abstract = "Four types of refractory concretes were studied at various temperatures ranging from ambient to adopted maximal 1400 degrees C. The concretes had same matrix composition: K concretes were based on corundum aggregate; B concretes were based on bauxite aggregate and chamotte filler; while K2 and B2 concretes had 30 % of fly ash replacement in bonding agent. Fly ash was mechanically activated by means of planetary ball mill. Samples were dried at 110 degrees C during 24 hours to create standard specimens. Afterwards, the samples were preburned at 1100 degrees C and subsequently subjected to compressive uniaxial creep test conducted at various temperatures (1200, 1300 and 1400 degrees C). Thermal behavior was also investigated by dilatometry analysis starting from room temperature up to 1400 degrees C. The evolution of the refractory concretes behavior from quasi-brittle to viscoplastic was investigated and correlated to their microstructure evolution induced by sintering process. The influence of the burning temperature and procedure duration on the concretes behavior is also discussed. Creep test and dilatometry analysis helped in defining of the sintering mechanism and its parameters, and additionally explained deformation nature of the refractory concretes.", publisher = "Procema SA", journal = "Revista Romana de Materiale/ Romanian Journal of Materials", title = "Investigation of high temperature behavior and sintering mechanism of fly ash based concretes", pages = "224-213", number = "3", volume = "44", url = "https://hdl.handle.net/21.15107/rcub_rims_259" }
Terzić, A., Andrić, L., Petrov, M., Radojević, Z.,& Miličić, L.. (2014). Investigation of high temperature behavior and sintering mechanism of fly ash based concretes. in Revista Romana de Materiale/ Romanian Journal of Materials Procema SA., 44(3), 213-224. https://hdl.handle.net/21.15107/rcub_rims_259
Terzić A, Andrić L, Petrov M, Radojević Z, Miličić L. Investigation of high temperature behavior and sintering mechanism of fly ash based concretes. in Revista Romana de Materiale/ Romanian Journal of Materials. 2014;44(3):213-224. https://hdl.handle.net/21.15107/rcub_rims_259 .
Terzić, Anja, Andrić, Ljubiša, Petrov, Milan, Radojević, Zagorka, Miličić, Ljiljana, "Investigation of high temperature behavior and sintering mechanism of fly ash based concretes" in Revista Romana de Materiale/ Romanian Journal of Materials, 44, no. 3 (2014):213-224, https://hdl.handle.net/21.15107/rcub_rims_259 .