Novel Utilization of Fly Ash for High-Temperature Mortars: Phase Composition, Microstructure and Performances Correlation
Abstract
In this study, the feasibility of using fly ash to manufacture high-temperature mortars was investigated. The investigation was set to define preliminary characteristics of new types of mortars based on ordinary and/or refractory cement with fly ash addition, and to establish mutual correlation between thermally induced changes of mineral phases, microstructure, and final performances of the mortars. New mortars, made up of 21% cement (PC-CEM I 42.5R/HAC-Secar 70/71), 70% river sand, and 9% fly ash, were chemically, physically, and mechanically characterized to determine possibilities of fly ash re-utilization for high-temperature purposes. The fly ash samples, which originated from four different power plants, were mechanically activated. Mortars were heat-treated up to 1300 degrees C in a laboratory tunnel furnace with retention time 2 h. Thermal stability of crystalline phases were studied by differential thermal analysis (DTA); thermally induced changes in mineral phase composition... were analyzed by XRD; and microstructure were investigated by scanning electron microscopy. Correlated results of DTA, XRD, and SEM analyses indicated initiation of sintering processes at approximately 1300 degrees C and formation of thermally stable minerals (rankinite, gehlenite, anorthite, cristobalite). The investigation highlights a sustainable approach of using fly ash in developing ecofriendly mortars for high-temperature application.
Source:
International Journal of Applied Ceramic Technology, 2015, 12, 1, 133-146Publisher:
- Wiley, Hoboken
Funding / projects:
- Directed synthesis, structure and properties of multifunctional materials (RS-172057)
- Development and application of multifunctional materials using domestic raw materials in upgraded processing lines (RS-45008)
DOI: 10.1111/ijac.12135
ISSN: 1546-542X
WoS: 000347716800016
Scopus: 2-s2.0-84920673784
Collections
Institution/Community
Institut za ispitivanje materijalaTY - JOUR AU - Terzić, Anja AU - Radojević, Zagorka AU - Pavlović, Ljubica AU - Pavlović, Vladimir AU - Mitić, Vojislav PY - 2015 UR - http://rims.institutims.rs/handle/123456789/281 AB - In this study, the feasibility of using fly ash to manufacture high-temperature mortars was investigated. The investigation was set to define preliminary characteristics of new types of mortars based on ordinary and/or refractory cement with fly ash addition, and to establish mutual correlation between thermally induced changes of mineral phases, microstructure, and final performances of the mortars. New mortars, made up of 21% cement (PC-CEM I 42.5R/HAC-Secar 70/71), 70% river sand, and 9% fly ash, were chemically, physically, and mechanically characterized to determine possibilities of fly ash re-utilization for high-temperature purposes. The fly ash samples, which originated from four different power plants, were mechanically activated. Mortars were heat-treated up to 1300 degrees C in a laboratory tunnel furnace with retention time 2 h. Thermal stability of crystalline phases were studied by differential thermal analysis (DTA); thermally induced changes in mineral phase composition were analyzed by XRD; and microstructure were investigated by scanning electron microscopy. Correlated results of DTA, XRD, and SEM analyses indicated initiation of sintering processes at approximately 1300 degrees C and formation of thermally stable minerals (rankinite, gehlenite, anorthite, cristobalite). The investigation highlights a sustainable approach of using fly ash in developing ecofriendly mortars for high-temperature application. PB - Wiley, Hoboken T2 - International Journal of Applied Ceramic Technology T1 - Novel Utilization of Fly Ash for High-Temperature Mortars: Phase Composition, Microstructure and Performances Correlation EP - 146 IS - 1 SP - 133 VL - 12 DO - 10.1111/ijac.12135 ER -
@article{ author = "Terzić, Anja and Radojević, Zagorka and Pavlović, Ljubica and Pavlović, Vladimir and Mitić, Vojislav", year = "2015", abstract = "In this study, the feasibility of using fly ash to manufacture high-temperature mortars was investigated. The investigation was set to define preliminary characteristics of new types of mortars based on ordinary and/or refractory cement with fly ash addition, and to establish mutual correlation between thermally induced changes of mineral phases, microstructure, and final performances of the mortars. New mortars, made up of 21% cement (PC-CEM I 42.5R/HAC-Secar 70/71), 70% river sand, and 9% fly ash, were chemically, physically, and mechanically characterized to determine possibilities of fly ash re-utilization for high-temperature purposes. The fly ash samples, which originated from four different power plants, were mechanically activated. Mortars were heat-treated up to 1300 degrees C in a laboratory tunnel furnace with retention time 2 h. Thermal stability of crystalline phases were studied by differential thermal analysis (DTA); thermally induced changes in mineral phase composition were analyzed by XRD; and microstructure were investigated by scanning electron microscopy. Correlated results of DTA, XRD, and SEM analyses indicated initiation of sintering processes at approximately 1300 degrees C and formation of thermally stable minerals (rankinite, gehlenite, anorthite, cristobalite). The investigation highlights a sustainable approach of using fly ash in developing ecofriendly mortars for high-temperature application.", publisher = "Wiley, Hoboken", journal = "International Journal of Applied Ceramic Technology", title = "Novel Utilization of Fly Ash for High-Temperature Mortars: Phase Composition, Microstructure and Performances Correlation", pages = "146-133", number = "1", volume = "12", doi = "10.1111/ijac.12135" }
Terzić, A., Radojević, Z., Pavlović, L., Pavlović, V.,& Mitić, V.. (2015). Novel Utilization of Fly Ash for High-Temperature Mortars: Phase Composition, Microstructure and Performances Correlation. in International Journal of Applied Ceramic Technology Wiley, Hoboken., 12(1), 133-146. https://doi.org/10.1111/ijac.12135
Terzić A, Radojević Z, Pavlović L, Pavlović V, Mitić V. Novel Utilization of Fly Ash for High-Temperature Mortars: Phase Composition, Microstructure and Performances Correlation. in International Journal of Applied Ceramic Technology. 2015;12(1):133-146. doi:10.1111/ijac.12135 .
Terzić, Anja, Radojević, Zagorka, Pavlović, Ljubica, Pavlović, Vladimir, Mitić, Vojislav, "Novel Utilization of Fly Ash for High-Temperature Mortars: Phase Composition, Microstructure and Performances Correlation" in International Journal of Applied Ceramic Technology, 12, no. 1 (2015):133-146, https://doi.org/10.1111/ijac.12135 . .