RIMS - Repository of Institute for Material Testing
Institute for Material Testing
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical determination and experimental validation of the fracture toughness of welded joints

Authorized Users Only
2020
Authors
Hemer, Abubkr
Milović, Ljubica
Grbović, Aleksandar
Aleksić, Bojana
Aleksić, Vujadin
Article (Published version)
Metadata
Show full item record
Abstract
Most of the serious weldment failures lead to catastrophic consequences in terms of damage of other equipment, loss of production, and risks to workers' health and safety. Hence, there is motivation to find margin between safety and disaster. This necessitates guaranteeing the integrity of a welded structure even if a crack is present. Therefore, influence of the material inhomogeneity and residual stresses on deformation and fracture behavior needs to be described precisely. Fracture mechanics parameters J - integral and CTOD have attracted great interest in recent years. Two three point bending specimens of base metal (BM) and weld metal (WM) were tested according to standard BS EN ISO 15653. Than, a two dimensional finite element analysis was performed in Ansys Workbench software to calculate J-integral, and compare with experimental results. The aim of this work is to explore the possibility of using the test results in the reliable prediction of weldment fracture.
Keywords:
Welded joints / J-R curve / J-integral / Finite element method
Source:
Engineering Failure Analysis, 2020, 107
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford
Funding / projects:
  • Pressure equipment integrity under simultaneous effect of fatigue loading and temperature (RS-35011)

DOI: 10.1016/j.engfailanal.2019.104220

ISSN: 1350-6307

WoS: 000496757000028

Scopus: 2-s2.0-85073592028
[ Google Scholar ]
4
1
URI
http://rims.institutims.rs/handle/123456789/378
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
Institut za ispitivanje materijala
TY  - JOUR
AU  - Hemer, Abubkr
AU  - Milović, Ljubica
AU  - Grbović, Aleksandar
AU  - Aleksić, Bojana
AU  - Aleksić, Vujadin
PY  - 2020
UR  - http://rims.institutims.rs/handle/123456789/378
AB  - Most of the serious weldment failures lead to catastrophic consequences in terms of damage of other equipment, loss of production, and risks to workers' health and safety. Hence, there is motivation to find margin between safety and disaster. This necessitates guaranteeing the integrity of a welded structure even if a crack is present. Therefore, influence of the material inhomogeneity and residual stresses on deformation and fracture behavior needs to be described precisely. Fracture mechanics parameters J - integral and CTOD have attracted great interest in recent years. Two three point bending specimens of base metal (BM) and weld metal (WM) were tested according to standard BS EN ISO 15653. Than, a two dimensional finite element analysis was performed in Ansys Workbench software to calculate J-integral, and compare with experimental results. The aim of this work is to explore the possibility of using the test results in the reliable prediction of weldment fracture.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Engineering Failure Analysis
T1  - Numerical determination and experimental validation of the fracture toughness of welded joints
VL  - 107
DO  - 10.1016/j.engfailanal.2019.104220
ER  - 
@article{
author = "Hemer, Abubkr and Milović, Ljubica and Grbović, Aleksandar and Aleksić, Bojana and Aleksić, Vujadin",
year = "2020",
abstract = "Most of the serious weldment failures lead to catastrophic consequences in terms of damage of other equipment, loss of production, and risks to workers' health and safety. Hence, there is motivation to find margin between safety and disaster. This necessitates guaranteeing the integrity of a welded structure even if a crack is present. Therefore, influence of the material inhomogeneity and residual stresses on deformation and fracture behavior needs to be described precisely. Fracture mechanics parameters J - integral and CTOD have attracted great interest in recent years. Two three point bending specimens of base metal (BM) and weld metal (WM) were tested according to standard BS EN ISO 15653. Than, a two dimensional finite element analysis was performed in Ansys Workbench software to calculate J-integral, and compare with experimental results. The aim of this work is to explore the possibility of using the test results in the reliable prediction of weldment fracture.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Engineering Failure Analysis",
title = "Numerical determination and experimental validation of the fracture toughness of welded joints",
volume = "107",
doi = "10.1016/j.engfailanal.2019.104220"
}
Hemer, A., Milović, L., Grbović, A., Aleksić, B.,& Aleksić, V.. (2020). Numerical determination and experimental validation of the fracture toughness of welded joints. in Engineering Failure Analysis
Pergamon-Elsevier Science Ltd, Oxford., 107.
https://doi.org/10.1016/j.engfailanal.2019.104220
Hemer A, Milović L, Grbović A, Aleksić B, Aleksić V. Numerical determination and experimental validation of the fracture toughness of welded joints. in Engineering Failure Analysis. 2020;107.
doi:10.1016/j.engfailanal.2019.104220 .
Hemer, Abubkr, Milović, Ljubica, Grbović, Aleksandar, Aleksić, Bojana, Aleksić, Vujadin, "Numerical determination and experimental validation of the fracture toughness of welded joints" in Engineering Failure Analysis, 107 (2020),
https://doi.org/10.1016/j.engfailanal.2019.104220 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB