Assessment of Efficiency of Rare Earth Elements Recovery from Lignite Coal Combustion Ash via Five-Stage Extraction
Abstract
Rare earth elements (REE) are frequently referred to as ingredients for enhancements in modem industry, as they are extensively applied in many industrial branches due to their accented electro-magnetic and optical properties. REE have end-utilizations as catalysts, magnets, and as dopants for ceramic materials. Rare earth minerals are scarce therefore the unconventional REE-containing resources such as waste materials and industrial byproducts are continuously being investigated. Coal combustion products comprise REE concentrations varying between 200 ppm and 1500 ppm. This quantity can be isolated though the extraction procedure. In this study, the five stages extraction was conducted on the coal combustion ash from the selected landfill site. The extractions of 32 elements (As, Ga, Ce, Be, Ge, Nd, Cr, Zr, Eu, Cu, Nb, Gd, Co, Mo, Dy, Li, Ag, W, Mn, Cd, Au, Ni, In, Hg, Pb, Sn, Ti, V, Sb, Th, Zn, and La) were conveyed. Chemical analyses were conducted via XRF, ICP-OES, ICP-MS, and MS t...echniques. The complexity of the obtained data was examined by Principal component analysis and Cluster analysis in order to derive interconnections between quantity of elements and landfill characteristics, as well as mutual relationships among the elements of interest, and to assess the accomplishment of REE recovery from the coal ash.
Keywords:
Powdery materials / Industrial byproduct / Dopants for ceramic materials / Chemical extraction / Analytical modelingSource:
Science of Sintering, 2021, 53, 2, 169-185Publisher:
- Međunarodni Institut za nauku o sinterovanju, Beograd
Funding / projects:
DOI: 10.2298/SOS2102169M
ISSN: 0350-820X
WoS: 000691836600003
Scopus: 2-s2.0-85110498766
Collections
Institution/Community
Institut za ispitivanje materijalaTY - JOUR AU - Miličić, Ljiljana AU - Terzić, Anja AU - Pezo, Lato AU - Mijatović, Nevenka AU - Brceski, Ilija AU - Vukelić, Nikola PY - 2021 UR - http://rims.institutims.rs/handle/123456789/400 AB - Rare earth elements (REE) are frequently referred to as ingredients for enhancements in modem industry, as they are extensively applied in many industrial branches due to their accented electro-magnetic and optical properties. REE have end-utilizations as catalysts, magnets, and as dopants for ceramic materials. Rare earth minerals are scarce therefore the unconventional REE-containing resources such as waste materials and industrial byproducts are continuously being investigated. Coal combustion products comprise REE concentrations varying between 200 ppm and 1500 ppm. This quantity can be isolated though the extraction procedure. In this study, the five stages extraction was conducted on the coal combustion ash from the selected landfill site. The extractions of 32 elements (As, Ga, Ce, Be, Ge, Nd, Cr, Zr, Eu, Cu, Nb, Gd, Co, Mo, Dy, Li, Ag, W, Mn, Cd, Au, Ni, In, Hg, Pb, Sn, Ti, V, Sb, Th, Zn, and La) were conveyed. Chemical analyses were conducted via XRF, ICP-OES, ICP-MS, and MS techniques. The complexity of the obtained data was examined by Principal component analysis and Cluster analysis in order to derive interconnections between quantity of elements and landfill characteristics, as well as mutual relationships among the elements of interest, and to assess the accomplishment of REE recovery from the coal ash. PB - Međunarodni Institut za nauku o sinterovanju, Beograd T2 - Science of Sintering T1 - Assessment of Efficiency of Rare Earth Elements Recovery from Lignite Coal Combustion Ash via Five-Stage Extraction EP - 185 IS - 2 SP - 169 VL - 53 DO - 10.2298/SOS2102169M ER -
@article{ author = "Miličić, Ljiljana and Terzić, Anja and Pezo, Lato and Mijatović, Nevenka and Brceski, Ilija and Vukelić, Nikola", year = "2021", abstract = "Rare earth elements (REE) are frequently referred to as ingredients for enhancements in modem industry, as they are extensively applied in many industrial branches due to their accented electro-magnetic and optical properties. REE have end-utilizations as catalysts, magnets, and as dopants for ceramic materials. Rare earth minerals are scarce therefore the unconventional REE-containing resources such as waste materials and industrial byproducts are continuously being investigated. Coal combustion products comprise REE concentrations varying between 200 ppm and 1500 ppm. This quantity can be isolated though the extraction procedure. In this study, the five stages extraction was conducted on the coal combustion ash from the selected landfill site. The extractions of 32 elements (As, Ga, Ce, Be, Ge, Nd, Cr, Zr, Eu, Cu, Nb, Gd, Co, Mo, Dy, Li, Ag, W, Mn, Cd, Au, Ni, In, Hg, Pb, Sn, Ti, V, Sb, Th, Zn, and La) were conveyed. Chemical analyses were conducted via XRF, ICP-OES, ICP-MS, and MS techniques. The complexity of the obtained data was examined by Principal component analysis and Cluster analysis in order to derive interconnections between quantity of elements and landfill characteristics, as well as mutual relationships among the elements of interest, and to assess the accomplishment of REE recovery from the coal ash.", publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd", journal = "Science of Sintering", title = "Assessment of Efficiency of Rare Earth Elements Recovery from Lignite Coal Combustion Ash via Five-Stage Extraction", pages = "185-169", number = "2", volume = "53", doi = "10.2298/SOS2102169M" }
Miličić, L., Terzić, A., Pezo, L., Mijatović, N., Brceski, I.,& Vukelić, N.. (2021). Assessment of Efficiency of Rare Earth Elements Recovery from Lignite Coal Combustion Ash via Five-Stage Extraction. in Science of Sintering Međunarodni Institut za nauku o sinterovanju, Beograd., 53(2), 169-185. https://doi.org/10.2298/SOS2102169M
Miličić L, Terzić A, Pezo L, Mijatović N, Brceski I, Vukelić N. Assessment of Efficiency of Rare Earth Elements Recovery from Lignite Coal Combustion Ash via Five-Stage Extraction. in Science of Sintering. 2021;53(2):169-185. doi:10.2298/SOS2102169M .
Miličić, Ljiljana, Terzić, Anja, Pezo, Lato, Mijatović, Nevenka, Brceski, Ilija, Vukelić, Nikola, "Assessment of Efficiency of Rare Earth Elements Recovery from Lignite Coal Combustion Ash via Five-Stage Extraction" in Science of Sintering, 53, no. 2 (2021):169-185, https://doi.org/10.2298/SOS2102169M . .