RIMS - Repository of Institute for Material Testing
Institute for Material Testing
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometric optimization of transition zones based on biomimetics principles

Thumbnail
Authors
Atanasovska, Ivana
Momčilović, Dejan
Article (Published version)
Metadata
Show full item record
Abstract
The basic definitions and a history of the development of biomimetics as a discipline that considers nature-inspired design are presented in this paper. The discussion and the results of the application of principles of nature-inspired design in machine elements design are given. The fact that transition zones that Nature chose and designed on trees in many cases survived for more than a hundred years, resisting on the various and variable external loads and other external conditions, is considered. Presented case study used the nature-inspired transition shapes in the research of innovative design and geometric optimization of transition zones of high-loaded shafts. The comparative Finite Element Analysis is performed for a particular transition zone with traditional engineering design, as well as with nature-inspired design. The conclusions about the increase of load capacity that is obtained with innovative biomimetics design are discussed.
Keywords:
Geometric optimization / stress-strain analysis / biomimetics / finite element analysis / high-loaded shafts
Source:
Journal of the Serbian Society for Computational Mechanics, 2021, 15, 2, 32-45
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200029 (Mathematical Institute of SASA, Belgrade) (RS-200029)

DOI: 10.24874/jsscm.2021.15.02.04

[ Google Scholar ]
URI
http://rims.institutims.rs/handle/123456789/457
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
Institut za ispitivanje materijala
TY  - JOUR
AU  - Atanasovska, Ivana
AU  - Momčilović, Dejan
PY  - 2021
UR  - http://rims.institutims.rs/handle/123456789/457
AB  - The basic definitions and a history of the development of biomimetics as a discipline that
considers nature-inspired design are presented in this paper. The discussion and the results of the
application of principles of nature-inspired design in machine elements design are given. The fact
that transition zones that Nature chose and designed on trees in many cases survived for more
than a hundred years, resisting on the various and variable external loads and other external
conditions, is considered. Presented case study used the nature-inspired transition shapes in the
research of innovative design and geometric optimization of transition zones of high-loaded
shafts. The comparative Finite Element Analysis is performed for a particular transition zone with
traditional engineering design, as well as with nature-inspired design. The conclusions about the
increase of load capacity that is obtained with innovative biomimetics design are discussed.
T2  - Journal of the Serbian Society for Computational Mechanics
T1  - Geometric optimization of transition zones based on biomimetics principles
EP  - 45
IS  - 2
SP  - 32
VL  - 15
DO  - 10.24874/jsscm.2021.15.02.04
ER  - 
@article{
author = "Atanasovska, Ivana and Momčilović, Dejan",
year = "2021",
abstract = "The basic definitions and a history of the development of biomimetics as a discipline that
considers nature-inspired design are presented in this paper. The discussion and the results of the
application of principles of nature-inspired design in machine elements design are given. The fact
that transition zones that Nature chose and designed on trees in many cases survived for more
than a hundred years, resisting on the various and variable external loads and other external
conditions, is considered. Presented case study used the nature-inspired transition shapes in the
research of innovative design and geometric optimization of transition zones of high-loaded
shafts. The comparative Finite Element Analysis is performed for a particular transition zone with
traditional engineering design, as well as with nature-inspired design. The conclusions about the
increase of load capacity that is obtained with innovative biomimetics design are discussed.",
journal = "Journal of the Serbian Society for Computational Mechanics",
title = "Geometric optimization of transition zones based on biomimetics principles",
pages = "45-32",
number = "2",
volume = "15",
doi = "10.24874/jsscm.2021.15.02.04"
}
Atanasovska, I.,& Momčilović, D.. (2021). Geometric optimization of transition zones based on biomimetics principles. in Journal of the Serbian Society for Computational Mechanics, 15(2), 32-45.
https://doi.org/10.24874/jsscm.2021.15.02.04
Atanasovska I, Momčilović D. Geometric optimization of transition zones based on biomimetics principles. in Journal of the Serbian Society for Computational Mechanics. 2021;15(2):32-45.
doi:10.24874/jsscm.2021.15.02.04 .
Atanasovska, Ivana, Momčilović, Dejan, "Geometric optimization of transition zones based on biomimetics principles" in Journal of the Serbian Society for Computational Mechanics, 15, no. 2 (2021):32-45,
https://doi.org/10.24874/jsscm.2021.15.02.04 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB