RIMS - Repository of Institute for Material Testing
Institute for Material Testing
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biomimetics Design of Tooth Root Zone at Cylindrical Gears Profile

No Thumbnail
Authors
Atanasovska, Ivana
Momčilović, Dejan
Lazović, Tatjana
Marinković, Aleksandar
Soldat, Nataša
Article (Published version)
Metadata
Show full item record
Abstract
During the last few decades, the requirements for modern machine elements in terms of size reduction, increasing the energy efficiency, and a higher load capacity of standard and non-standard gears have been very prevalent issues. Within these demands, the main goals are the optimization of the gears’ tooth profiles, as well as the investigation of new tooth profile designs. The presented design idea is based on the optimal solutions inspired by nature. Special attention is paid to the new design of the tooth root zones of spur gears in order to decrease the stress concentration values and increase the tooth root fatigue resistance. The finite element method is used for stress and strain state calculations, and the particular gear pair is modeled and optimized for these purposes. For tooth root strength analysis, the estimations are based on the theory of critical distances and the stress gradients obtained through finite element analysis. The obtained stress gradients have sh...own important improvements in the stress distribution in the transition zone optimized by biomimetics. An analysis of the material variation influence is also performed. Based on the investigations of a particular gear pair, a significant stress reduction of about 7% for steel gears and about 10.3% for cast iron gears is obtained for tooth roots optimized by bio-inspired design.

Keywords:
biomimetics / cylindrical gears / tooth root design / fatigue resistance / finite element analysis / theory of critical distances
Source:
Biomimetics, 2023, 8, 3
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200029 (Mathematical Institute of SASA, Belgrade) (RS-200029)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200012 (Istitute of Material Testing of Serbia - IMS, Belgrade) (RS-200012)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200105 (University of Belgrade, Faculty of Mechanical Engineering) (RS-200105)

DOI: 10.3390/biomimetics8030308

[ Google Scholar ]
URI
http://rims.institutims.rs/handle/123456789/538
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
Institut za ispitivanje materijala
TY  - JOUR
AU  - Atanasovska, Ivana
AU  - Momčilović, Dejan
AU  - Lazović, Tatjana
AU  - Marinković, Aleksandar
AU  - Soldat, Nataša
PY  - 2023
UR  - http://rims.institutims.rs/handle/123456789/538
AB  - During the last few decades, the requirements for modern machine elements in terms of size
reduction, increasing the energy efficiency, and a higher load capacity of standard and non-standard
gears have been very prevalent issues. Within these demands, the main goals are the optimization
of the gears’ tooth profiles, as well as the investigation of new tooth profile designs. The presented
design idea is based on the optimal solutions inspired by nature. Special attention is paid to the new
design of the tooth root zones of spur gears in order to decrease the stress concentration values and
increase the tooth root fatigue resistance. The finite element method is used for stress and strain
state calculations, and the particular gear pair is modeled and optimized for these purposes. For
tooth root strength analysis, the estimations are based on the theory of critical distances and the
stress gradients obtained through finite element analysis. The obtained stress gradients have shown
important improvements in the stress distribution in the transition zone optimized by biomimetics.
An analysis of the material variation influence is also performed. Based on the investigations of a
particular gear pair, a significant stress reduction of about 7% for steel gears and about 10.3% for cast iron gears is obtained for tooth roots optimized by bio-inspired design.
T2  - Biomimetics
T1  - Biomimetics Design of Tooth Root Zone at Cylindrical Gears Profile
IS  - 3
VL  - 8
DO  - 10.3390/biomimetics8030308
ER  - 
@article{
author = "Atanasovska, Ivana and Momčilović, Dejan and Lazović, Tatjana and Marinković, Aleksandar and Soldat, Nataša",
year = "2023",
abstract = "During the last few decades, the requirements for modern machine elements in terms of size
reduction, increasing the energy efficiency, and a higher load capacity of standard and non-standard
gears have been very prevalent issues. Within these demands, the main goals are the optimization
of the gears’ tooth profiles, as well as the investigation of new tooth profile designs. The presented
design idea is based on the optimal solutions inspired by nature. Special attention is paid to the new
design of the tooth root zones of spur gears in order to decrease the stress concentration values and
increase the tooth root fatigue resistance. The finite element method is used for stress and strain
state calculations, and the particular gear pair is modeled and optimized for these purposes. For
tooth root strength analysis, the estimations are based on the theory of critical distances and the
stress gradients obtained through finite element analysis. The obtained stress gradients have shown
important improvements in the stress distribution in the transition zone optimized by biomimetics.
An analysis of the material variation influence is also performed. Based on the investigations of a
particular gear pair, a significant stress reduction of about 7% for steel gears and about 10.3% for cast iron gears is obtained for tooth roots optimized by bio-inspired design.",
journal = "Biomimetics",
title = "Biomimetics Design of Tooth Root Zone at Cylindrical Gears Profile",
number = "3",
volume = "8",
doi = "10.3390/biomimetics8030308"
}
Atanasovska, I., Momčilović, D., Lazović, T., Marinković, A.,& Soldat, N.. (2023). Biomimetics Design of Tooth Root Zone at Cylindrical Gears Profile. in Biomimetics, 8(3).
https://doi.org/10.3390/biomimetics8030308
Atanasovska I, Momčilović D, Lazović T, Marinković A, Soldat N. Biomimetics Design of Tooth Root Zone at Cylindrical Gears Profile. in Biomimetics. 2023;8(3).
doi:10.3390/biomimetics8030308 .
Atanasovska, Ivana, Momčilović, Dejan, Lazović, Tatjana, Marinković, Aleksandar, Soldat, Nataša, "Biomimetics Design of Tooth Root Zone at Cylindrical Gears Profile" in Biomimetics, 8, no. 3 (2023),
https://doi.org/10.3390/biomimetics8030308 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB