An augmented approach for the determination of the particle size effect on energy dispersive X-ray fluorescence analysis outcomes for alumina-based refractory materials
Abstract
The chemical compositions of refractory materials, such as high-alumina concrete, bricks, and putty, were analyzed using an energy-dispersive X-ray spectrometer (EDXRF). An improved methodology for investigating the effect of particle size on the outcomes of EDXRF chemical analysis is presented. Eight independent refractory samples (refractory concrete, brick, and putty) were pulverized utilizing seven milling times (30, 60, 120, 180, 240, 300, and 360 s) and compared to non-pulverized samples. Thus, sixty-four refractory samples were obtained and analyzed using EDXRF. The method for measuring the fundamental EDXRF characteristics was then tested with ten certified reference materials. The acquired data were compared using inductively coupled plasma atomic emission spectrometry (ICP-OES). Univariate and multivariate statistics are used to evaluate EDXRF data. The particle size of the tested samples affected the z-scores of SiO2, Al2O3, Fe2O3, TiO2, CaO, MgO, Na2O, K2O, and P2O5 concent...ration measurements. Grinding times for refractory concrete, brick, and putty samples were determined in order to validate the robustness of the EDXRF technique and provide reliable chemical analyses. The ideal milling times for the samples studied ranged from 180 to 360 s, depending on the type of refractory material.
Source:
Spectrochimica Acta Part B: Atomic Spectroscopy, 2023, 209, 106796Funding / projects:
Collections
Institution/Community
Institut za ispitivanje materijalaTY - JOUR AU - Mijatović, Nevenka AU - Vasić, Milica AU - Terzić, Anja AU - Radomirović, Milena AU - Miličić, Ljiljana PY - 2023 UR - http://rims.institutims.rs/handle/123456789/577 AB - The chemical compositions of refractory materials, such as high-alumina concrete, bricks, and putty, were analyzed using an energy-dispersive X-ray spectrometer (EDXRF). An improved methodology for investigating the effect of particle size on the outcomes of EDXRF chemical analysis is presented. Eight independent refractory samples (refractory concrete, brick, and putty) were pulverized utilizing seven milling times (30, 60, 120, 180, 240, 300, and 360 s) and compared to non-pulverized samples. Thus, sixty-four refractory samples were obtained and analyzed using EDXRF. The method for measuring the fundamental EDXRF characteristics was then tested with ten certified reference materials. The acquired data were compared using inductively coupled plasma atomic emission spectrometry (ICP-OES). Univariate and multivariate statistics are used to evaluate EDXRF data. The particle size of the tested samples affected the z-scores of SiO2, Al2O3, Fe2O3, TiO2, CaO, MgO, Na2O, K2O, and P2O5 concentration measurements. Grinding times for refractory concrete, brick, and putty samples were determined in order to validate the robustness of the EDXRF technique and provide reliable chemical analyses. The ideal milling times for the samples studied ranged from 180 to 360 s, depending on the type of refractory material. T2 - Spectrochimica Acta Part B: Atomic Spectroscopy T1 - An augmented approach for the determination of the particle size effect on energy dispersive X-ray fluorescence analysis outcomes for alumina-based refractory materials IS - 106796 VL - 209 DO - 10.1016/j.sab.2023.106796 ER -
@article{ author = "Mijatović, Nevenka and Vasić, Milica and Terzić, Anja and Radomirović, Milena and Miličić, Ljiljana", year = "2023", abstract = "The chemical compositions of refractory materials, such as high-alumina concrete, bricks, and putty, were analyzed using an energy-dispersive X-ray spectrometer (EDXRF). An improved methodology for investigating the effect of particle size on the outcomes of EDXRF chemical analysis is presented. Eight independent refractory samples (refractory concrete, brick, and putty) were pulverized utilizing seven milling times (30, 60, 120, 180, 240, 300, and 360 s) and compared to non-pulverized samples. Thus, sixty-four refractory samples were obtained and analyzed using EDXRF. The method for measuring the fundamental EDXRF characteristics was then tested with ten certified reference materials. The acquired data were compared using inductively coupled plasma atomic emission spectrometry (ICP-OES). Univariate and multivariate statistics are used to evaluate EDXRF data. The particle size of the tested samples affected the z-scores of SiO2, Al2O3, Fe2O3, TiO2, CaO, MgO, Na2O, K2O, and P2O5 concentration measurements. Grinding times for refractory concrete, brick, and putty samples were determined in order to validate the robustness of the EDXRF technique and provide reliable chemical analyses. The ideal milling times for the samples studied ranged from 180 to 360 s, depending on the type of refractory material.", journal = "Spectrochimica Acta Part B: Atomic Spectroscopy", title = "An augmented approach for the determination of the particle size effect on energy dispersive X-ray fluorescence analysis outcomes for alumina-based refractory materials", number = "106796", volume = "209", doi = "10.1016/j.sab.2023.106796" }
Mijatović, N., Vasić, M., Terzić, A., Radomirović, M.,& Miličić, L.. (2023). An augmented approach for the determination of the particle size effect on energy dispersive X-ray fluorescence analysis outcomes for alumina-based refractory materials. in Spectrochimica Acta Part B: Atomic Spectroscopy, 209(106796). https://doi.org/10.1016/j.sab.2023.106796
Mijatović N, Vasić M, Terzić A, Radomirović M, Miličić L. An augmented approach for the determination of the particle size effect on energy dispersive X-ray fluorescence analysis outcomes for alumina-based refractory materials. in Spectrochimica Acta Part B: Atomic Spectroscopy. 2023;209(106796). doi:10.1016/j.sab.2023.106796 .
Mijatović, Nevenka, Vasić, Milica, Terzić, Anja, Radomirović, Milena, Miličić, Ljiljana, "An augmented approach for the determination of the particle size effect on energy dispersive X-ray fluorescence analysis outcomes for alumina-based refractory materials" in Spectrochimica Acta Part B: Atomic Spectroscopy, 209, no. 106796 (2023), https://doi.org/10.1016/j.sab.2023.106796 . .