RIMS - Repository of Institute for Material Testing
Institute for Material Testing
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
  •   RIMS
  • Institut za ispitivanje materijala
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Type of precipitation and durations of sediment exposure as important weathering factors

No Thumbnail
Authors
Antić, Nevena
Kašanin-Grubin, Milica
Štrbac, Snežana
Xie, Chunxia
Mijatović, Nevenka
Tosti, Tomislav
Jovančićević, Branimir
Article (Published version)
Metadata
Show full item record
Abstract
A diversity of factors, led by lithology, weathering, and erosion processes, plays a significant role in the formation and future of badland terrains. Then on previous observations it can be concluded that surface flow processes are the first trigger of erosion and that intense soil erosion combined with rapid and deep weathering are tightly connected to high erosion rates. Since climate change presents a global issue that gains increasing attention and due to the complexity of the interactions and processes that are a part of general badlands origin and evolution, a weathering experiment on badland sediments from China was conducted. Explaining temporal changes, the impact of different precipitation types and its durations of exposure on sediments during weathering processes, as well as its impact on leachate ions behaviour are the aims behind this experiment. Red clayey siltstone and mudstone badland sediments selected for the laboratory experiment were organized in four sets t...hat included three different samples, making a total of 12 treated samples. Based on field climate data, in laboratory conditions samples were exposed to rain, acid rain, snow, and acid snow through fifteen daily cycles. Leachate was collected after each cycle and its volume, pH, electrical conductivity (EC), and ion concentrations were measured and analysed from the leachate. Changes occurring on the surface of the sample were observed through photographs taken at the end of each cycle. Based on obtained results it can be said that the main differences occur when comparing rain and snow treatments generally. Temporal, cyclic changes were, to a certain extent, noticed through sediment decay. More importantly, durations of sediment exposure to precipitation proved to be crucial for weathering processes of tested siltstones and mudstones, having exclusion and ionic forces - ion exchange chromatography as dominant chemical processes.

Source:
CATENA, 2023
Publisher:
  • Elsevier

DOI: 10.1016/j.catena.2023.107192

ISSN: 0341-8162

WoS: 000990742200001

Scopus: 2-s2.0-85162217334
[ Google Scholar ]
URI
http://rims.institutims.rs/handle/123456789/658
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
Institut za ispitivanje materijala
TY  - JOUR
AU  - Antić, Nevena
AU  - Kašanin-Grubin, Milica
AU  - Štrbac, Snežana
AU  - Xie, Chunxia
AU  - Mijatović, Nevenka
AU  - Tosti, Tomislav
AU  - Jovančićević, Branimir
PY  - 2023
UR  - http://rims.institutims.rs/handle/123456789/658
AB  - A diversity of factors, led by lithology, weathering, and erosion processes, plays a significant role in the formation and future of badland terrains. Then on previous observations it can be concluded that surface flow processes are the first trigger of erosion and that intense soil erosion combined with rapid and deep weathering are tightly connected to high erosion rates.

Since climate change presents a global issue that gains increasing attention and due to the complexity of the interactions and processes that are a part of general badlands origin and evolution, a weathering experiment on badland sediments from China was conducted. Explaining temporal changes, the impact of different precipitation types and its durations of exposure on sediments during weathering processes, as well as its impact on leachate ions behaviour are the aims behind this experiment.

Red clayey siltstone and mudstone badland sediments selected for the laboratory experiment were organized in four sets that included three different samples, making a total of 12 treated samples. Based on field climate data, in laboratory conditions samples were exposed to rain, acid rain, snow, and acid snow through fifteen daily cycles. Leachate was collected after each cycle and its volume, pH, electrical conductivity (EC), and ion concentrations were measured and analysed from the leachate. Changes occurring on the surface of the sample were observed through photographs taken at the end of each cycle.
Based on obtained results it can be said that the main differences occur when comparing rain and snow treatments generally. Temporal, cyclic changes were, to a certain extent, noticed through sediment decay. More importantly, durations of sediment exposure to precipitation proved to be crucial for weathering processes of tested siltstones and mudstones, having exclusion and ionic forces - ion exchange chromatography as dominant chemical processes.
PB  - Elsevier
T2  - CATENA
T1  - Type of precipitation and durations of sediment exposure as important weathering factors
DO  - 10.1016/j.catena.2023.107192
ER  - 
@article{
author = "Antić, Nevena and Kašanin-Grubin, Milica and Štrbac, Snežana and Xie, Chunxia and Mijatović, Nevenka and Tosti, Tomislav and Jovančićević, Branimir",
year = "2023",
abstract = "A diversity of factors, led by lithology, weathering, and erosion processes, plays a significant role in the formation and future of badland terrains. Then on previous observations it can be concluded that surface flow processes are the first trigger of erosion and that intense soil erosion combined with rapid and deep weathering are tightly connected to high erosion rates.

Since climate change presents a global issue that gains increasing attention and due to the complexity of the interactions and processes that are a part of general badlands origin and evolution, a weathering experiment on badland sediments from China was conducted. Explaining temporal changes, the impact of different precipitation types and its durations of exposure on sediments during weathering processes, as well as its impact on leachate ions behaviour are the aims behind this experiment.

Red clayey siltstone and mudstone badland sediments selected for the laboratory experiment were organized in four sets that included three different samples, making a total of 12 treated samples. Based on field climate data, in laboratory conditions samples were exposed to rain, acid rain, snow, and acid snow through fifteen daily cycles. Leachate was collected after each cycle and its volume, pH, electrical conductivity (EC), and ion concentrations were measured and analysed from the leachate. Changes occurring on the surface of the sample were observed through photographs taken at the end of each cycle.
Based on obtained results it can be said that the main differences occur when comparing rain and snow treatments generally. Temporal, cyclic changes were, to a certain extent, noticed through sediment decay. More importantly, durations of sediment exposure to precipitation proved to be crucial for weathering processes of tested siltstones and mudstones, having exclusion and ionic forces - ion exchange chromatography as dominant chemical processes.",
publisher = "Elsevier",
journal = "CATENA",
title = "Type of precipitation and durations of sediment exposure as important weathering factors",
doi = "10.1016/j.catena.2023.107192"
}
Antić, N., Kašanin-Grubin, M., Štrbac, S., Xie, C., Mijatović, N., Tosti, T.,& Jovančićević, B.. (2023). Type of precipitation and durations of sediment exposure as important weathering factors. in CATENA
Elsevier..
https://doi.org/10.1016/j.catena.2023.107192
Antić N, Kašanin-Grubin M, Štrbac S, Xie C, Mijatović N, Tosti T, Jovančićević B. Type of precipitation and durations of sediment exposure as important weathering factors. in CATENA. 2023;.
doi:10.1016/j.catena.2023.107192 .
Antić, Nevena, Kašanin-Grubin, Milica, Štrbac, Snežana, Xie, Chunxia, Mijatović, Nevenka, Tosti, Tomislav, Jovančićević, Branimir, "Type of precipitation and durations of sediment exposure as important weathering factors" in CATENA (2023),
https://doi.org/10.1016/j.catena.2023.107192 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMS | Send Feedback

OpenAIRERCUB